
Лекция 8. Геохимия магматизма

- 1. Магматические горные породы являются главным типом эндогенного вещества земной коры; они составляют почти половину вещества верхней части континентальной коры (48.5 %), являются самыми распространенными породами океанической коры, входят как существенный компонент в состав осадочной оболочки континентов (13.9 %).
- 2. Вся система магматических пород земной коры является геологически гетерогенной: во-первых, в зависимости от условий формирования они подразделяются на эффузивные и интрузивные, причем геологическая связь этих двух фациальных обстановок не является тривиальной; во-вторых, и эффузивные, и интрузивные магматические породы, внедрявшиеся или изливавшиеся на поверхность в различной геодинамической обстановке, систематически различаются по комплексу своих характеристик (конкретным условиям залегания, составам исходных магм и их геохимическими особенностями, набором пород, входящих в состав магматических комплексов или вулканических серий, степени дифференциации, сопутствующим магматическим и магматогенным оруденением). Эта геологическая гетерогенность магматических пород является фундаментальной характеристикой магматического вещества земной коры; она стала основой учения о магматических формациях, разработанного Ю. А. Кузнецовым (Кузнецов, 1964) и нашедшей наиболее яркое и полное подтверждение всеми современными геохимическими, включая изотопные, данными. В настоящее время геохимическая систематика магматических пород в связи с их геодинамической позицией стала основой петрологии и геодинамики.

Вулканические зоны

Магматические породы

Классификация магматических пород

	Структура	Текстура	кислые SiO ₂ > 65%	средние SiO ₂ 65—53%	основные SiO ₂ 53-45%	ультраосновн. SiO ₂ < 45%	Щелочные кислые	Щелочные средние	Щелочные основные
Минеральный состав	Размеры, форма слагающих породу частей (минералов, зерен, стекол и т.д.).	Взаимоотно- шения слагающих породу частей.	кварц, калиевый полевой шпат, плагиоклаз кислый, биотит, роговая обманка *	плагиоклаз средний, роговая обманка, калиевый полевой шпат, биотит, пироксены	плагиоклаз основной, пироксены, оливин, роговая обманка	оливин, пироксены	плагиоклаз кислый (альбит), калиевый полевой шпат, роговая обманка, кварц	калиевый полевой шпат, плагиоклаз средний, роговая обманка, биотит, пироксены	нефелин, плагиоклаз средний, роговая обманка, пироксены
эффузивные	стекловатая, афировая, порфировая	массивная, шаровая, пузыристая, флюидальная, миндалека- менная	риолит (липарит)	андезит	базальт	пикрит, коматиит	дацит	трахит	фонолит
жильные	порфировидная, мелкокристал- лическая	полосчатая, массивная	гранит	микродиорит	микро- габбро, диабаз			микро- сиенит	микро- фойяит
			лампрофир, пегматит, аплит						
интрузивные	крупно- и среднекристал- лическая, порфировидная	массивная, такситовая	гранит **	диорит	габбро	дунит, перидотит	граносиенит	сиенит	нефелиновый си енит (фойяит, миаскит и

^{*} Курсивом выделены второстепенные минералы.

^{**} Цвет соответствует стандартному обозначению на геологических картах.

Магматические породы

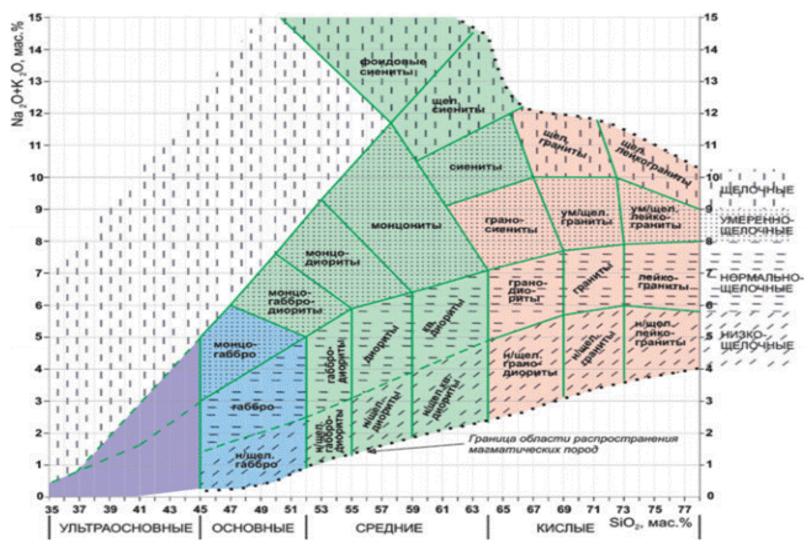
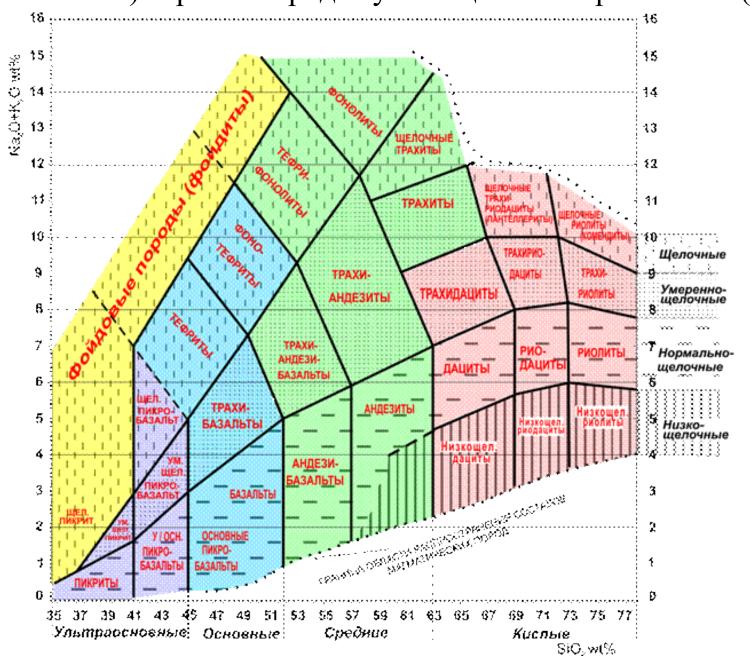



 Диаграмма сумма щелочей — кремнезем (TAS) для химической классификации плутонических горных пород основного, среднего и кислого составов

Диаграмма для химической классификации магматических (вулканических) горных пород «сумма щелочей-кремнезем»(TAS)

Диаграмма

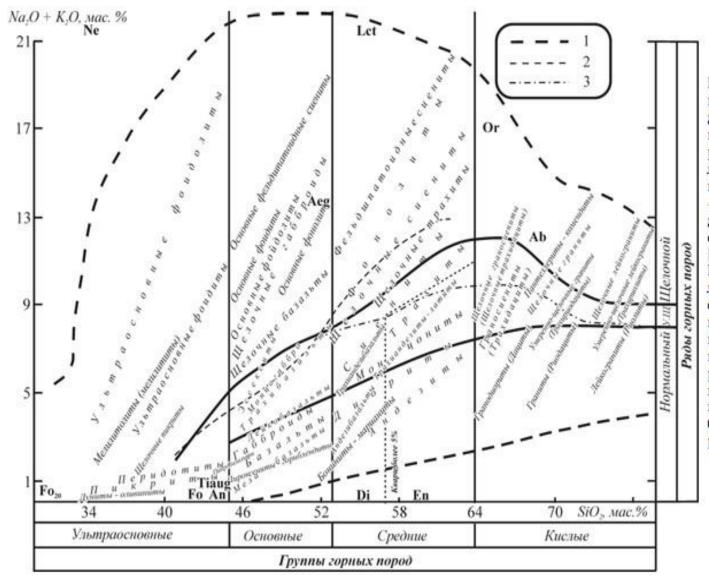


Рис. 2. Положение семейств магматических горных пород в координатах SiO₂ - (Na₂O + K₂O) с нанесенными составами некоторых породообразующих минералов. Названия семейств написаны по диагоналям прямоугольников полей, отражающих принятые для данного семейства пределы содержаний SiO2 и Na2O + K2O Петрографический..., Классификация..., 1981]:1 - область распространения химичесоставов магматических горных пород; 2 - нижняя граница щелочных пород, содержащих F; 3 – нюкняя граница поля распространенности бесфельдшпатоидных пород, содержащих щелочные пироксены и амфиболы; УЩ - умеренно-щелочной ряд

Серии магматических формаций

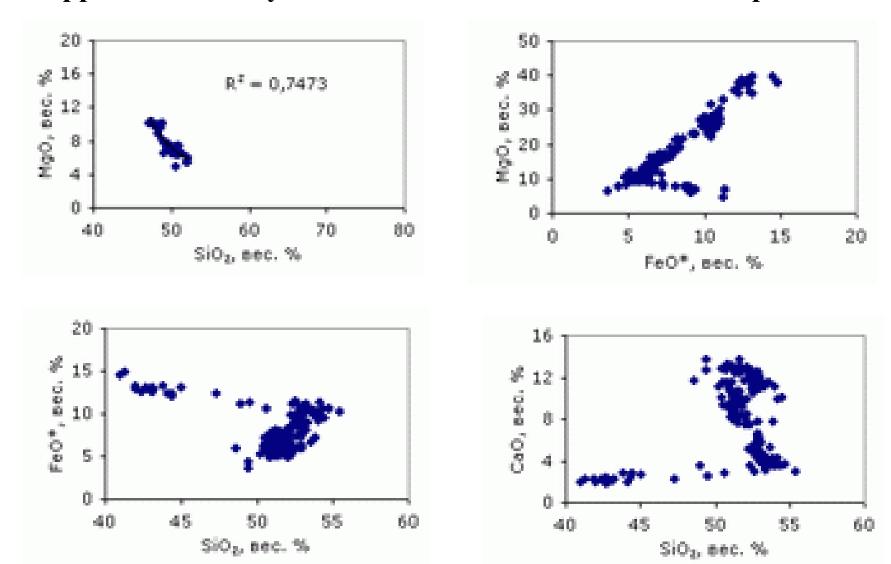
- **Толеитовая** (TNa, Na-COX, K-Na) серия включает базальты, андезибазальты, андезиты (исландиты) и небольшие объемы дацитов и риолитов. Содержание SiO₂ в большинстве случаев находится в пределах 48-63% (модальное среднее содержание SiO₂ 53%). В основной массе присутствуют авгит и пижонит. Характерен тренд обогащения железом.
- Известково-щелочная (ИNa, K-Na) серия включает большие объемы андезитов, дацитов и риолитов при подчиненной роли базальтов и андезибазальтов. Содержание SiO₂ колеблется от 52 до 70% (среднее модальное содержание SiO₂ 59%). В основной массе присутствует ортопироксен, пижонита нет. Отсутствует обогащение железом.
- Субщелочная калиево-натриевая (СК-Na) серия объединяют субщелочные оливиновые базальты, гавайиты, муджериты, трахиты, трахиандезиты, трахидациты и трахириолиты. С ростом содержания в породах SiO₂ наблюдается увеличение их железистости. Аналогичная тенденция устанавливается и для клинопироксенов в ряду основные средние кислые породы.
- Субщелочная калиевая (СК) серия, петрографическим эквивалентом которых являются шошонитовые серии, образованы породами от абсарокитов и шошонитов до латитов и калиевых риолитов. Все они, как и породы известково-щелочной серии, характеризуются отсутствием тренда обогащенности клинопироксенов и пород в целом железом.
- **Щелочная** (ЩК-Na, K) серия, содержащие фельдшпатоиды (нефелин, лейцит), а также щелочные темноцветные минералы и др., отличаются от субщелочных серий более высокими содержаниями щелочей и в среднем более низкими содержаниями кремнезема (обычно 44-47% SiO₂). Породы щелочных серий очень разнообразны.

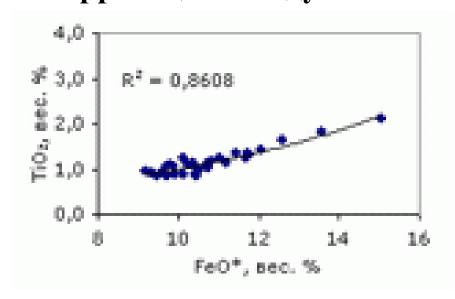
Магматические формации

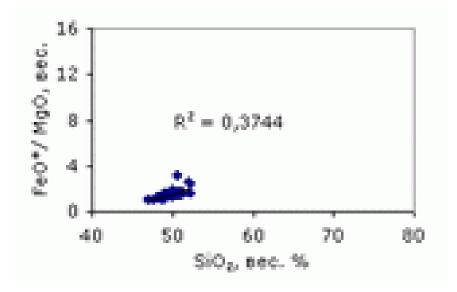
		Мегафации глубинности				
Степень мафичности пород	Степень щелочности пород	Вулканические	Плутонические и гипабиссальные			
		Формации				
Ультрамафические	Нормальная		Габбро-дунит-гарцбургитовая			
	Умеренная	Кимберлитовая				
Ультрамафические и мафические	Нормальная	Пикрит-базальтовая Коматиит-базальтовая	Дунит-клинопироксенит-габбровая Перидотит-ортопироксенит-габброноритовая Дунит-троктолит-габброноритовая Плагиоливинит-верлит-габбровая Долерит-плагиоперидотитовая			
	Умеренная	Слюдяных пикритов	Оливинитов, клинопироксенитов,			
	Высокая	Щелочных пикритов и меланефелинитов Лампроит-угандит-лейцититовая	фоидолитов и карбонатитов Оливинитов, клинопироксенитов, фельдшпатоидных габброидов, сиенитов и карбонатитов			
Мафические	Нормальная	Известковистых базальтов Натриевых базальтов Натриевых базальтов и риолитов Базальт-андезит-риолитовая Андезит-базальтовая Риолит-базальтовая	Габбро-долеритовая Анортозит-лейкогабброноритовая			
	Умеренная	Трахибазальтовая Трахибазальт-трахиандезит-трахирио- литовая Трахириолит-трахибазальтовая Абсарокит-трахитовая	Сиенит-габбровая Лампрофировая			
	Высокая	Щелочных базальтоидов и фонолитов Щелочных базальтоидов и лейцитофиров	Щелочных габброидов и нефелиновых сиенитов Щелочных габброидов и фельдишатоидных сиенитов			
Мафисалические	Нормальная	Базальт-андезитовая Андезитовая	Габбро-диорит-гранодиоритовая Габбро-диорит-плагиогранитовая			
	Умеренная	Базальт-латитовая	Монцогаббро-монцодиорит-сиенитовая			
Салические	Нормальная	Дацит-риолитовая Риолитовая	Тоналит-плагиогранит-гранодиоритовая Диорит-гранодиоритовая Гранитовая Лейкогранитовая Аляскитовая			
	Умеренная	Трахириолитовая	Монцодиорит-сиенит-гранитовая Гранит-граносиенитовая Гранитов рапакиви Щелочных гранитов и сиенитов			
	Высокая	Фонолитов и щелочных трахитов Лейцитофиров и щелочных трахитов	Нефелиновых и щелочных сиенитов Миаскитов и щелочных сиенитов Сынныритов, фельдшпатоидных и щелочных сиенитов			

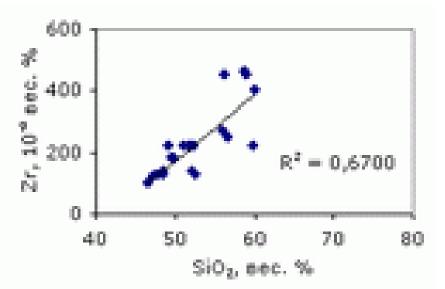
3. Геологическая гетерогенность магматических пород делает геологически не интерпретируемой оценку среднего химического состава магматического вещества земной коры в целом, этого классического объекта геохимиков, и требует разработки системы оценок среднего состава магматических пород в зависимости от их геодинамической позиции. В качестве первого приближения можно предложить оценки на основании данных о распространенности главных типов магматических пород в различных геотектонических зонах земной коры, полученных А. Б. Роновым (Ронов, 1985; см. также Ронов и др., 1990; Ярошевский, 1997). Эти количественные оценки, конечно, полностью подтверждают давно ясную всем геологам геологическую дихотомию магматического вещества земной коры - резкое преобладание основных магматических пород в составе эффузивной компоненты и настолько же резкое преобладание гранитоидного вещества в составе интрузивной компоненты континентов (на геологически независимую позицию основного вулканизма и кислого интрузивного магматизма ссылался, например, Ф. Ю. Левинсон-Лессинг (Левинсон-Лессин, 1934), критикуя идею Дэли-Боуэна о единой первичной базальтовой магме).

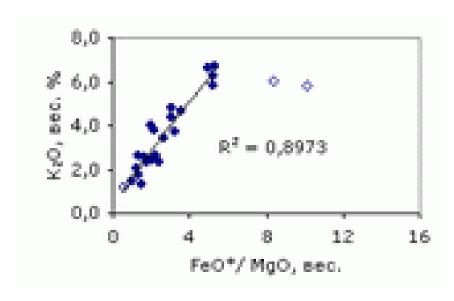
Распространенность магматических пород в составе осадочной оболочки континентов, в океанах и в гранитно-метаморфической оболочке континентов

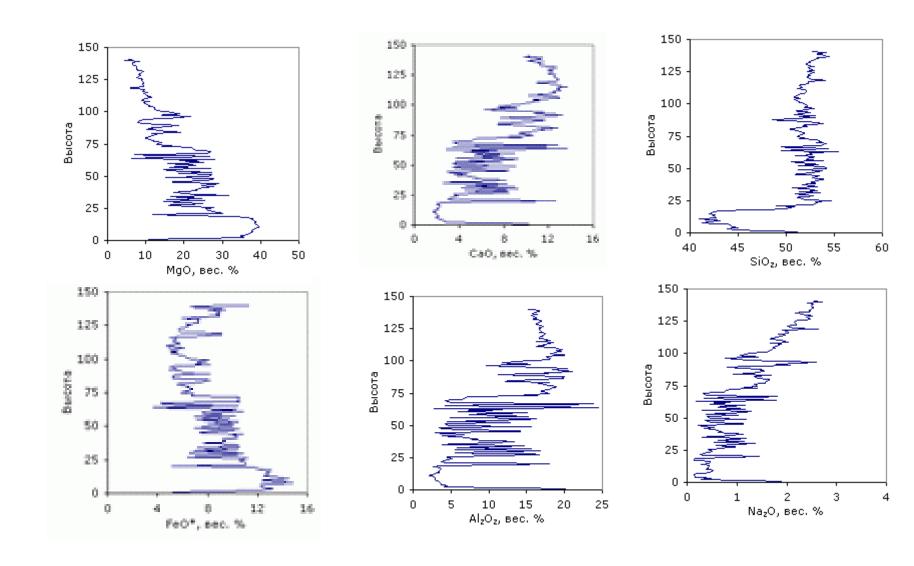

(Ронов, Ярошевский, Мигдисов, 1990)

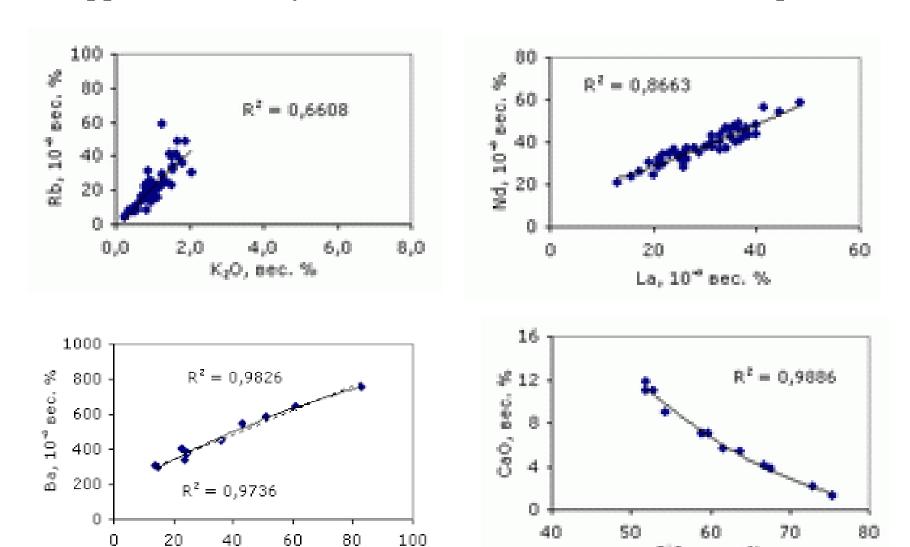

Породы	Распространен-	Macca	
	ность, об.%	$10^{21}\Gamma$	
Осадочная оболочка континентов			
Платформы континентов:			
Траппы и платобазальты	33,0		
Субщелочные оливиновые базальты	48,2		
Трахиандезиты и трахиты	7,5		
Трахиадациты	5,65		
Трахириолиты	5,65		
Вулканические породы платформ в целом	100	2,1	
Складчатые пояса:			
Базальты	54,9		
Андезиты	33,1		
Дациты	6,1		
Риолиты	6,1		
Вулканические породы складчатых поясов в целом	100	358	
Океаническая кора	I		
Базальты срединно-океанических хребтов и дна океанове	96,8		
Субщелочные базальты внутриокеанических островов и их дифференциаты	3,2		
Вулканические породы океанов в целом	100	1085	
Гранитно-метаморфическая оболочка континентов			
Гранитоиды	95,4		
Габброиды	4,1		
Сиениты, нифелиновые сиениты	<0,1		
Ультраосновные породы	<0,1		
Интрузивные породы континентов в целом	100	3870	


Масса $(10^{24} \, г)$ и средний химический состав (вес.%) главных групп магматических пород земной коры (Ярошевский, 1997)


Компо-	- Эффузивные формации континентов				Эффузивны	Интру- зивные		
	Плато- базальты и траппы платформ	Субщелоч- ные оливи- новые базальты платформ	Вулкани- ческие формации складчаты х поясов	Средний состав	Базальты срединно- океаничес- ких хребтов	Вулканичес- кие породы внутри- океанических островов	Средний состав	форма- ции конти- нентов
SiO_2	50,44	52,85	55,56	55,28	50,56	49,47	50,53	67,48
Al_2O_3	15,39	15,37	17,08	16,94	15,07	15,21	15,07	15,65
Fe_2O_3	3,90	4,08	3,37	3,43	1,74	3,59	1,80	1,73
FeO	8,32	6,19	5,15	5,29	8,88	8,77	8,88	2,52
MgO	6,52	5,81	4,84	4,94	7,59	7,30	7,58	1,81
CaO	10,04	7,54	8,43	8,42	11,81	8,47	11,70	2,92
Na ₂ O	2,53	3,35	3,04	3,05	2,43	3,10	2,45	3,62
K_2O	0,91	2,15	1,37	1,40	0,190	1,03	0,217	3,92
TiO ₂	1,54	1,87	0,81	0,886	1,41	2,49	1,45	0,457
MnO	0,202	0,160	0,157	0,158	0,18	0,17	0,18	0,057
P_2O_5	0,210	0,435	0,196	0,209	0,14	0,40	0,148	0,139
Macca	10	21	358	389	1050	35	1085	3700


4. Распределение химических элементов в дифференцированных интрузивных магматических комплексах и эффузивных сериях: конкретных ассоциациях магматических пород, объединяемых по признакам их единства в геологическом пространстве-времени в состав формаций, подчинено строгим закономерностям. Эти закономерности наиболее отчетливо проявляются в системе корреляций между содержаниями в породах различных химических элементов (параметров внепространственной геохимической структуры магматических объектов). Такие соотношения, непротиворечиво интерпретируемые на основании экспериментальных данных как результат дифференциации первичных магматических расплавов, позволяют обосновать идею не только о геологической связи пород дифференцированных комплексов и эффузивных серий, но и о генетической их связи, и ввести представления о дифференцированных сериях, эволюция состава которых подчинена законам некоторого механизма фракционирования. Дополнительную информацию о закономерностях распределения химических элементов в дифференцированных сериях дают параметры пространственной геохимической структуры интрузивных магматических комплексов, геологическая позиция и обнаженность которых позволяет обосновать последовательность формирования пород, входящих в состав таких комплексов.



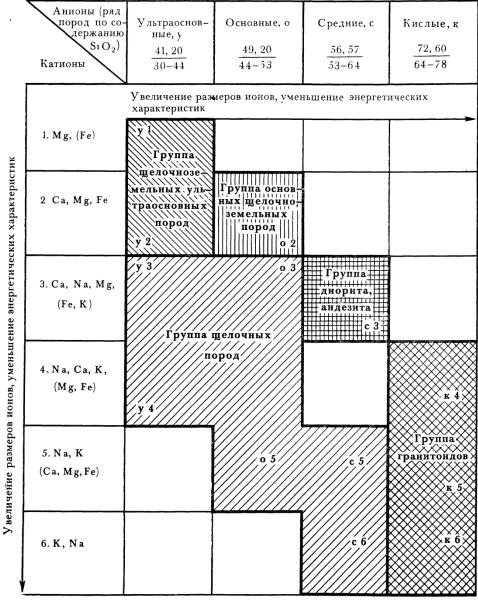


Rb, 10 ° sec. %

SiO2, sec. %

5. Принципиально важно, что закономерности распределения химических элементов в конкретных дифференцированных сериях (параметры геохимической структуры соответствующих магматических комплексов) не зависят от геодинамической позиции таких комплексов, т. е. являются инвариантными по отношению к геологическим условиям формирования магматических пород. Этот эмпирический факт показывает, что законы поведения химических элементов в магматических процессах, являясь по своему существу законами физикохимическими, более фундаментальны, чем законы геологии; геологическое разнообразие магматических пород отражает лишь варианты реализации действия одних и тех же физико-химических законов, одних и тех же принципов поведения химических элементов. Очевидность этой ситуации и успехи в разработке физико-химических моделей поведения химических элементов в магматических процессах и предопределили глубокое внедрение геохимических принципов и критериев в современную петрологию и геодинамику; появилось широкое и огромное по научной и прикладной значимости поле эксплуатации геохимии в различных областях геологии.

6. Инвариантность закономерностей распределения химических элементов в магматических комплексах различной геологической позиции позволяет в известном смысле вернуться к классической проблеме геохимии - анализу общих закономерностей распределения элементов во всей системе магматических пород (Гольдшмидт, Виноградов и др.), Эти закономерности уже давно явились основанием сгруппировать химические элементы в соответствии с их особенностями распределения в магматических породах.

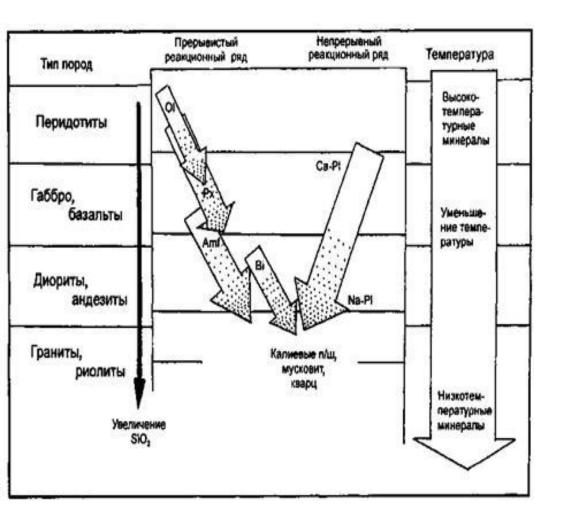

Во-первых, выделяется основная группа элементов, в состав которой входят самые распространенные элементы (Si, Al, Mg, Fe, Ca, Na, K); их количественные соотношения, собственно, лежат в основе петрохимической систематики магматических пород, а взаимные корреляции (обычно положительные для Si с Na и K и отрицательные для Si с Мg и Fe, но положительные для Si с отношением Fe / Mg) определяют закономерности эволюции дифференцированных серий и коррелируют с температурами кристаллизации.

Во-вторых, выделяется большая группа преимущественно литофильных элементов, распадающаяся на ряд подгрупп: 1) Li, Rb, Cs, Be, Ba, Y, TR, Th, U, Zr, Hf, Nb, Ta, а также Ga, Tl, Ge, Sn, Pb, Bi, W, F; 2) Sc, Cr, Mn, а также Co, Ni, Zn; 3) Sr, Ti, P, V, распределение содержаний и отношений содержаний которых по-разному, но для всех устойчиво коррелирует с распределением главных элементов; это совершенно определенно указывает на то, что поведение и главных, и этих второстепенных элементов обусловлено проявлением единого механизма. Закономерности распределения содержаний в магматических породах элементов первой и второй групп полностью соответствуют законам их поведения в ходе фракционной кристаллизации систем породообразующих силикатов, что является доказательством определяющей роли кристаллизационной дифференциации как механизма магматической эволюции.

В третьих, от этих закономерностей резко отличаются закономерности распределения большинства халькофильных и сидерофильных элементов (Си, Ag, Au, Cd, Hg, In, As, Sb, S, Se, Te, Mo, Re, элементов группы Pt), содержание которых в магматических породах в общей системе вообще не коррелирует с главными элементами (за исключением элементов группы Pt, повышенным содержанием которых отличаются ультаосновные породы); лишь в отдельных дифференцированных сериях иногда наблюдаются разные варианты локальной корреляции, например Cu и Fe, платиноидов с Cr и т. п. Для этих элементов характерны свои связи - между собой и, что наиболее важно, с S, в особенности в тех объектах, в которых наблюдается сульфидная минерализация. Очевидно, что поведение этих элементов в ходе магматического процесса, подчиняясь общим законам эволюции, локально контролируется поведением сульфидной компоненты магматических систем.

Наконец, такие элементы, как H, B, C, N, Cl, Br, I, а также He, Ne, Ar, Kr, Xe образуют отдельную группу; их распределение в системе магматических пород также обычно не коррелировано с содержаниями главных элементов и, очевидно, отражает проявление дополнительного механизма - их перераспределения в составе газовой фазы, возможность которого обусловлена летучестью их соединений

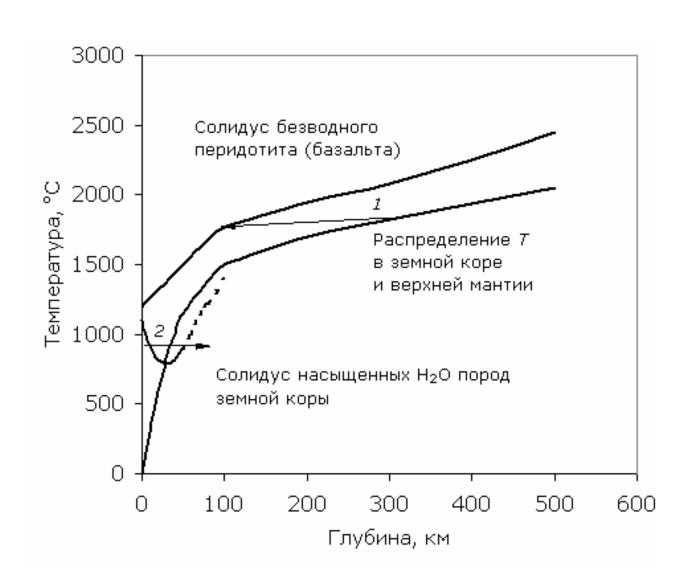
Геохимическая систематика магматических пород (по А.И. Перельману)



- 7. Эмпирические закономерности распределения химических элементов в сопоставлении с физическими и физико-химическими законами поведения элементов в различного типа возможных (разрешенных законами физики и химии) механизмах перераспределения и дифференциации многокомпонентных систем позволяют в настоящее время сделать определенный выбор в пользу наиболее реалистичного в природной обстановке механизма дифференциации:
- все предполагаемые механизмы дифференциации в гомогенных (расплавных) системах гравитационная диффузия, термодиффузия, бародиффузия не могут быть эффективными в геологических масштабах времени и пространства из-за исключительно низкой скорости диффузионного массопереноса; поэтому геологическое значение могут иметь только механизмы дифференциации в гетерогенных системах;
- модели жидкостного расслоения (ликвации) магматических расплавов остаются до сих пор ни экспериментально, ни теоретически не разработанными; не известно ни одной публикации, в которой была бы предпринята попытка конкретно сопоставить закономерности геохимической структуры магматических комплексов с ожидаемым распределением химических элементов в соответствии с (неизвестными пока) законами ликвации; поэтому доказательств геологической реалистичности механизма жидкостного расщепления нет, а практически давно ясное полное согласие этих эмпирических закономерностей с законами поведения химических элементов в ходе кристаллизационной дифференциации делает идею ликвации в приложении к проблемам магматизма бесперспективной; исключением является, конечно, сульфидно-силикатная ликвация, которая хорошо изучена экспериментально и закономерности которой согласуются с природной картиной распределения халькофильных и сидерофильных элементов;

- вклад в дифференциацию магматической системы возможного перераспределения в пределах магматической камеры газовой фазы или обмена газовой фазой магматической камеры и вмещающей рамы а priori можно считать незначительным по трем причинам: ограниченное содержание летучих компонентов, малая плотность газовой фазы и малая растворимость породообразующих компонентов в геохимически допустимых флюидных фазах не может обеспечить плотностей потоков массопереноса, которые могли бы объяснить наблюдаемые масштабы разделения элементов в ходе магматической эволюции; идея о том, что магматические системы могут обмениваться с массами флюидов, многократно превышающими массы самих магматических систем, не имеет ни эмпирических геологических, ни физических доказательств;
- согласующимся со всем комплексом геохимических данных является механизм кристаллизационной дифференциации; это утверждение опирается на разработанные и экспериментально исследованные модели кристаллизационной дифференциации, в рамках которых со времен Боуэна и Гольдшмидта качественно, а в настоящее время количественно удается воспроизвести практически все закономерности распределения химических элементов как в конкретных дифференцированных комплексах (за исключением ритмической расслоенности интрузивных комплексов ультраосновных, основных и щелочных пород), так и в системе магматических пород земной коры в целом.

Ряд реакционный (Боуэна)


- эмпирически установленная Боуэном последовательность кристаллизации минералов из магмы в виде двух реакционных рядов:

- 1. прерывистого ряда фемических минералов: оливин -> ромбический пироксен -> моноклинный пироксен -> амфибол -> биотит;
- 2. непрерывного ряда салических минералов: основной плагиоклаз > средний плагиоклаз -> кислый плагиоклаз -> калиевый полевой шпат.

Совместная кристаллизация минералов двух рядов протекает с образованием эвтектики и в этом случае последовательность выделения зависит от состава расплава. Предложенные Боуэном реакционные ряды кристаллизации минералов могут нарушаться в зависимости от состава расплава, от температуры, давления и других условий.

- 8. Современные физико-химические модели поведения химических элементов в ходе формирования и эволюции магматических систем и интерпретация на этой основе указанных эмпирических закономерностей базируются на следующих физических и физико-химических принципах:
- зарождение магматической системы (формирование первичных расплавов) в рамках стандартной модели тепловой истории Земли (с первоначально равномерно рас-пределенными источниками тепла) начинается в результате пересечения геотермы с кривой зависимости температуры солидуса (начала плавления) вещества; реализуются два крайних варианта: 1) пересечение геотермы с кривой безводного солидуса базальтов, что возможно на глубинах, соответствующих низам верхней мантии и глубже, 2) пересечение геотермы с кривой водонасыщенного солидуса основных и кислых магматических и соответствующих им метаморфических пород в пределах нижних горизонтов континентальной коры и в верхней мантии; как показывают геологические данные (дискретность магматизма в геологическом пространстве-времени), такое пересечение вероятнее всего реализуется или при подъеме восходящих струй (диапиров) в условиях движения вещества в мантии, или при погружения водонасыщенных блоков пород земной коры; роль локальных источников тепла (трение движущихся относительно друг друга блоков пород, локальное концентрирование специфического теплоносителя, например флюдного потока) количественно не обоснована; если они и действуют, то только как дополнительные, не способные объяснить глобальный характер магматизма на Земле и планетах земной группы;
- развитие плавления, разделение остаточных твердых фаз и расплава и концентрирование последнего в самостоятельные массы, способные к интрузии или излиянию на поверхность, осуществляются за счет нестабильности гетерогенной системы (расплав-твердые фазы) в гравитационном поле и <эффекта зонного плавления>, совместное проявление которых в пределах магмогенерирующей системы ведет к подплавлению гетерогенной смеси в потоках, движущихся вверх, и кристаллизации в потоках, движущихся вниз; по-видимому, пространственное разделение остаточных твердых фаз и расплава может начаться при незначительной доли жидкой фазы с момента формирования в области плавления системы связанных пор, заполненных расплавом;

- затвердевание и сопровождающая этот процесс кристаллизационная дифференциация ведут к формированию дифференцированных формирующиеся магмы представляют собой динамическую систему, состав которой непрерывно эволюционирует; эту эволюцию, протекающую по законам частичного плавления, можно считать фиксированной в условный момент физического отделения расплава от остаточных фаз, и соответствующий расплав можно было бы называть первичным для последующей дифференцированной серии, но надо иметь в виду, что перегретых расплавов в природе практически не бывает, внедряющиеся магмы или изливающиеся на поверхность лавы почти всегда содержат интрателлурические фазы, реакция с которыми в ходе адиабатического подъема продолжает изменять состав расплава; эта ситуация, а также вариации содержаний химических элементов в веществе, вовлекаемом в плавление, являются основанием предполагать множественность составов первичных расплавов, но существование ограниченного числа геодинамически различных магматических формаций и корреляция составов первичных магм с геодинамической позицией предполагает существование определенных закономерностей вариаций условий магмогенерации, ограничивающих и, возможно, дискретизирующих допустимое с общих позиций такое разнообразие интрузивных комплексов и вулканических серий;
- основной механизм перераспределения и разделения химических элементов в объеме магматической камеры или питающего вулканического очага перемещение в гравитационном поле твердых и жидких фаз разной плотности; факторами, количественно определяющими масштабы дифференциации и пространственное строение расслоенных комплексов, являются: содержание интрателлурической твердой фазы, относительные скорости перемещения твердых фаз и сульфидной жидкости в конвектирующем расплаве и фундаментальные физико-химические параметры, индивидуальные для каждого элемента в каждой фазе, коэффициенты распределения между твердыми фазами и расплавом в зависимости от состава расплава и температуры; такой механизм кристаллизационной дифференциации имеет все свойства фракционной кристаллизации, но количественно при его описание рэлеевское уравнение не применимо из-за невыполнения одного из его ограничений объем твердой фазы, находящейся в равновесии со всем объемом расплава на каждой стадии затвердевания не является бесконечно малым, а составляет конечную, обычно существенную часть уже выделившихся кристаллов;

- механизмы направленной кристаллизации с диффузионным контролем перераспределения компонентов между кристаллизующимися фазами и остальным объемом застойного или конвектирующего расплава не способны количественно объяснить наблюдаемые масштабы дифференциации и строение расслоенных магматических комплексов;
- эффективная ассимиляция вмещающих пород и смешение вещества различной предшествующей, в частности изотопной истории, требуют разработки соответствующей модели массопереноса в магматической камере, ведущего к эффективной гомогенизации; в настоящее время не известно ни одной публикации в этой области, а опыт изучения обстановки формирования магматических комплексов в рамках модели затвердевания рождает определенный скепсис относительно возможности реализации так называемых АF-моделей; это означает, что большое число изотопных данных в области магматических пород остается пока не интерпретируемыми на основе физически реалистичных принципов;
- возникновение локальных рудных концентраций ряда элементов в дифференцированных магматических комплексах (Сг и элементы группы Рt в ультраосновных породах, Сu-Ni-сульфидные руды в основных и ультраосновных породах, Fe-Ti-V-руды в дифференцированных комплексах основных пород и анортозитов, месторождение Р в Хибинском массиве, редкометальные месторождения в кислых или щелочных магматических породах) подчинено общим закономерностям поведения элементов в ходе магматической эволюции; основным условием формирования таких локальных концентраций является появление на ликвидусе эволюционирующего магматичекого расплава собственных (рудных) фаз элементов (принцип котектической насыщенности, сформулированный Л.Н.Когарко).

Зонное плавление

Гипотетический процесс выплавления и дегазации вещества мантии Земли, аналогичный механизму <u>зонной</u> плавки, который приводит к образованию оболочек Земли (литосферы, гидросферы и атмосферы). Гипотеза 3. п. предложена советским учёным А. П. Виноградовым (1955) для объяснения оболочечного строения планеты и закономерностей распределения химических элементов в земной коре. Советские учёные В. А. Магницкий (1964), А. Н. Тихонов и др. (1969) дали физико-математическое обоснование процесса. Согласно этой гипотезе, на ранней стадии эволюции Земли в мантии (близкой по составу к каменным метеоритам), на различных её глубинах, преимущественно в астеносфере, в результате разогревания теплом, генерируемым радиоактивными элементами, возникают отдельные расплавленные магматические очаги, дальнейшая химическая дифференциация которых в соответствии с законами зонной плавки приводит к разделению первичного вещества на фазы — тугоплавкую и легкоплавкую. Легкоплавкая фаза перемещается вверх к поверхности Земли по принципу зонной плавки. Физической причиной перемещения расплавленного вещества вверх является конвективная неустойчивость протяжённых в радиальном направлении расплавленных масс в гравитационном поле планеты. Эта неустойчивость приводит к возникновению конвективных течений в жидкости. Следствием этих движений является усиленный перенос тепла в пределах расплавленного очага снизу вверх, что приводит к относительному переохлаждению расплава и его кристаллизации в нижних частях очага и относительному перегреву и плавлению пород кровли в верхних частях. Перемещение расплавленного вещества вверх по принципу зонной плавки сопровождается изменением состава расплава с обогащением его элементами и соединениями, понижающими температуру плавкости системы («легкоплавкими» компонентами, в том числе «летучими»). Остаточная твёрдая фаза (которая может и не проходить стадии полного плавления) обогащается «тугоплавкими» элементами и соединениями, повышающими температуру её плавкости. Т. о., подъём расплава вверх приводит к химической дифференциации вещества мантии и выносу к поверхности Земли веществ, концентрирующихся в земной коре, гидросфере и атмосфере. В соответствии с физико-химическими законами кристаллизации силикатных систем выносимые из недр Земли расплавы, формирующие земную кору, относительно обогащены Si, A1, K, Na, Ca, U, Th, Sr, Ba, Rb и многими др. (литофильными) элементами. Остаточное («тугоплавкое») вещество мантии сложено главным образом силикатами Mg и Fe, а также соединениями Ni, Cr и некоторых др. элементов. Геохимические закономерности распределения химических элементов в породах земной коры (гранитах и базальтах), в дунитах и перидотитах, слагающих дифференцированную мантию, и в силикатной фазе каменных метеоритов (хондритов) соответствуют распределению элементов в процессе 3. п. первичной недифференцированной мантии хондритового состава.