Тема 1. Щелочные элементы

Щелочные элементы

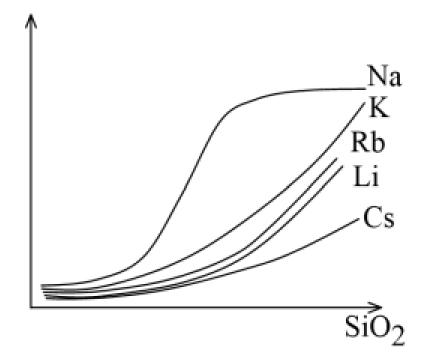
	1 A			_	Ц,	JJ I	O			C			IVI	U I					VIII A 18
	1,00794																		4,00260
1	1 H	II A	1											III A	IV A	VA	VIA	VII A	2He
	водород	2												13	14	15	16	17	ГЕЛИЙ
	6,941	9,01218												10,811	12,0107	14,0067	15,9994	18,9984	20,1797
2	зLi	₄Be												5 B	6 C	7 N	80	9 F	10 Ne
	ЛИТИЙ	БЕРИЛЛИЙ												БОР	УГЛЕРОД	A3OT	кислород	ФТОР	HEOH
	22,9898	24,3050												26,9815	28,0855	30,9738	32,065	35,453	39,948
3	11 Na	12 Mg		III B	IV B	VB	VIB	VII B		VIII B		IB	IIВ	13 A l	14Si	15 P	16 S	17 CI	18 Ar
	НАТРИЙ	МАГНИЙ		3	4	5	6	7	8	9	10	11	12	АЛЮМИНИЙ	КРЕМНИЙ	ФОСФОР	CEPA	ХЛОР	АРГОН
	39,0983	40,078		44,9559	47,867	50,9415	51,9961	54,9380	55,845	58,9332	58,6934	63,546	65,38	69,723	72,63	74,9216	78,96	79,904	83,798
4	19 K	20 Ca		21 SC	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 C u	30 Z n	31 G a	32 Ge	33 As	34 Se	35 Br	36 K r
	КАЛИЙ	КАЛЬЦИЙ		СКАНДИЙ	HATNT	ВАНАДИЙ	XPOM	МАРГАНЕЦ	ЖЕЛЕЗО	КОБАЛЬТ	никель	МЕДЬ	цинк	ГАЛЛИЙ	ГЕРМАНИЙ	МЫШЬЯК	СЕЛЕН	БРОМ	КРИПТОН
	85,4678	87,62		88,9058	91,224	92,9064	95,96	[98]	101,07	102,905	106,42	107,868	112,411	114,818	118,710	121,760	127,60	126,904	131,293
5	37 Rb	38 S r		39 Y	40 Zr	41 Nb	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 ln	50 Sn	51 Sb	52 Te	53	54 Xe
	РУБИДИЙ	СТРОНЦИЙ		ИТТРИЙ	ЦИРКОНИЙ	НИОБИЙ	молибден	ТЕХНЕЦИЙ	РУТЕНИЙ	РОДИЙ	ПАЛЛАДИЙ	СЕРЕБРО	КАДМИЙ	индий	олово	СУРЬМА	ТЕЛЛУР	ИОД	KCEHOH
	132,905	137,327		174,967	178,49	180,948	183,84	186,207	190,23	192,217	195,084	196,967	200,59	204,383	207,2	208,980	[209]	[210]	[222]
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 O S	77 ir	78 Pt	79 A u	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
	ЦЕЗИЙ	БАРИЙ		ЛЮТЕЦИЙ	ГАФНИЙ	ТАНТАЛ	ВОЛЬФРАМ	РЕНИЙ	ОСМИЙ	иридий	ПЛАТИНА	золото	РТУТЬ	ТАЛЛИЙ	СВИНЕЦ	ВИСМУТ	полоний	ACTAT	РАДОН
	[223]	[226]		[262]	[267]	[270]	[271]	[274]	[277]	[278]	[281]	[281]	[285]	[286]	[289]	[289]	[293]	[294]	[294]
7	87 F r	88 Ra	**	103 Lr	104 Rf	105 Db		107 Bh		109 Mt	110 Ds			113 Uut	114 FI	115 Uup		117 Uus	118 Uuo
	ФРАНЦИЙ	РАДИЙ		ЛОУРЕНСИЙ	РЕЗЕРФОРДИЙ	ДУБНИЙ	СИБОРГИЙ	БОРИЙ	ХАССИЙ	МЕЙТНЕРИЙ	ДАРМШТАДТИЙ	РЕНТГЕНИЙ	КОПЕРНИЦИЙ		ФЛЁРОВИЙ		ЛИВЕРМОРИЙ		

* [IAH	ITAI	HOI	идь

* * АКТИНОИДЫ

138,905	140,116	140,908	144,242	[145]	150,36	151,964	157,25	158,925	162,500	164,930	167,259	168,934	173,054
57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb
ЛАНТАН	ЦЕРИЙ	ПРАЗЕОДИМ	НЕОДИМ	ПРОМЕТИЙ	САМАРИЙ	ЕВРОПИЙ	ГАДОЛИНИЙ	ТЕРБИЙ	диспрозий	ГОЛЬМИЙ	ЭРБИЙ	ТУЛИЙ	ИТТЕРБИЙ
[227]	232,038	231,036	238,029	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]
89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No
АКТИНИЙ	ТОРИЙ	ПРОТАКТИНИЙ	УРАН	нептуний	ПЛУТОНИЙ	АМЕРИЦИЙ	КЮРИЙ	БЕРКЛИЙ	КАЛИФОРНИЙ	ЭЙНШТЕЙНИЙ	ФЕРМИЙ	менделевий	НОБЕЛИЙ

Свойства щелочных элементов


Элемент	Li	Na	K	Rb	Cs
Атомный номер	3	11	19	37	55
Валентности	+1	+1	+1	+1	+1
Радиус иона, Å	0,76	1,02	1,51	1,61	1,74
Координационное число	VI	VIII	VIII-XII	VIII-XII	XII
Распространенность, г/т					
- Земная кора	27	2.0 %	2.4 %	110	4
- ультра-осн. г. п.	2	0,2 %	0,03 %	1	0,01
- основные г. п.	10	1,9 %	0,15 %	17	1
- средние г. п.	10	2,68 %	1,52 %	40	1,7
- кислые г. п.	√ 35	2,75 %	3,23 %	↓ 150	↓ 5
- осадочные г. п.	60	0,79 %	2,51 %	150	15
Вода океана, мг/кг	0.18	10 800	380	0,12	0,0004
ПДК, питьевая вода, мг/кг	0,03	200	_	0,1	_
Число минералов (2015 г.)	109	949	418	3	22
Добыча, т в год * - без США	130 000*	290 000 000 галит 16 000 000 сода	40 000 000	_	(210)

Общие свойства элементов группы

- Щелочные элементы типичные литофилы.
- Na и K в Земной коре макроэлементы; Li, Rb, Cs микроэлементы.
- Электронные оболочки атомов щелочных элементов имеют единственный электрон. Из-за очень малого потенциала ионизации атомы легко отдают его, и в природе присутствуют в виде ионов, единственная валентность в этой группе +1.
- Из-за низкой электроотрицательности, характерной для всех элементов группы, в соединениях они образуют ионные связи.
- Увеличение радиуса ионов по группе приводит к ограниченному изоморфизму, и элементы разделяются в геохимических ассоциациях: Li // Na // K, Rb // Cs.
- Вследствие этого макроэлементы Na и K минерагенные, микроэлемент Li умеренно минерагенный (изоморфный хозяин Mg), а Rb и Cs относятся к рассеянным микроэлементам.

Общие свойства элементов группы

• Соединения щелочных элементов с большинством минеральных и органических анионов обладают высокой растворимостью. Поэтому их минералы большинства классов (галогениды, сульфаты, карбонаты) образуются только в специфических (эвапоритовых) условиях. В Земной коре из минералов щелочных элементов абсолютно преобладают алюмосиликаты.

• В магматическом процессе все щелочные элементы накапливаются в остаточных расплавах, и их содержания растут с ростом SiO₂, от ультра-основных к кислым породам.

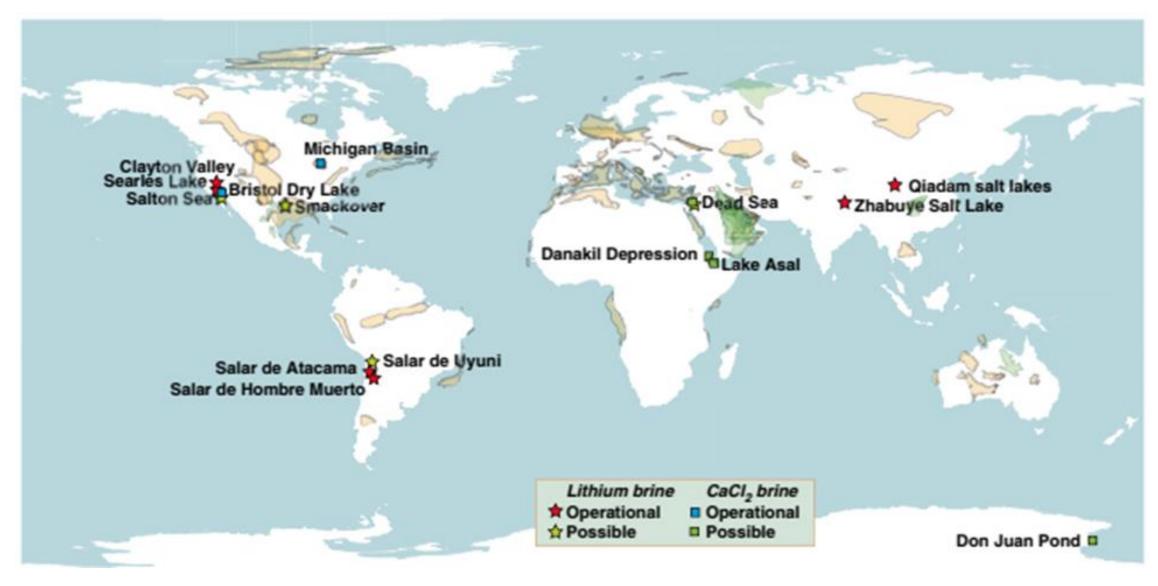
Общие свойства элементов группы

- Щелочные элементы хорошие мигранты в водной среде. Преобладающая форма нахождения – свободные катионы.
- К и, в меньшей степени Na относятся к биологически активным элементам, Li, Rb и Cs к индифферентным.
- Токсичность щелочных элементов не установлена, и вся группа считается в экологическом плане относительно безопасной.

- Li имеет очень низкую космическую распространенность (1,5 ppm в углистых хондритах) из-за «выгорания» при нуклеосинтезе в звездах. Мантия Земли бедна литием, но при ее дифференциации литий переходит в расплав и существенно накапливается в Земной коре.
- Li имеет два стабильных изотопа: 6 Li (7.59%) и 7 Li (92.41%). В природе наблюдается значительное фракционирование лития между породами и водой. Средний состав силикатной земли имеет δ^7 Li +3.2 ‰, тогда как океанская вода δ^7 Li +31 ‰. Это фракционирование, вероятно, связано с низкотемпературными процессами выветривания. В целом, изотопная геохимия лития еще недостаточно изучена.

- Поскольку кристаллохимический радиус Li (0.76 Å) существенно меньше, чем Na (1.02 Å), изовалентный изоморфизм очень ограничен; главное значение для Li имеет гетеровалентный изоморфизм с Mg (0.72 Å). В кислых магматических породах, пегматитах и метасоматитах, бедных магнием, проявляется разнообразие собственных минералов Li.
- Типичная схема изоморфизма:

Для реализации такой схемы должна быть возможна компенсация заряда. Поэтому в орто-силикатах (оливинах, ортопироксенах) замещение Mg на Li не реализуется.


- Известно 109 собственных минералов лития (2015 г.), из них наиболее важные
 - сподумен LiAlSi₂O₆
 - петалит $LiAlSi_4O_{10}$
 - лепидолит $K_2Li_3Al_5Si_6O_{20}(F, OH)$

- В магматических процессах литий накапливается в остаточных расплавах и сильно обогащает кислые породы (выделяется специфическая группа литий-фтористых гранитов). Накопление лития в пегматитах и метасоматитах приводит к образованию месторождений лития.
- В гидротермальном процессе литий легко переходит в водный раствор и теряется из пород.
- В поверхностных водах литий хороший мигрант; он частично захватывается глинами, однако заметного концентрирования при этом обычно не достигается.
- Литий может накапливаться в воде и солевых осадках при выветривании в континентальных условиях (высокогорные бессточные котловины в аридных климатических зонах).
- Биохимические функции лития не установлены, и в биосфере он ведет себя индифферентно.

- Использование. До конца XX века области использования лития были весьма ограниченными. Он использовался как катализатор для получения полимеров, в смазочных материалах, специальных сортах керамики, в атомной промышленности и для получения лекарственных препаратов. Эти области применения существенно лимитировались высокой ценой соединений лития. К концу XX века потребление лития достигло уровня 10 тыс. т в год.
- Радикальное изменение потребления лития связано с изобретением батарей и аккумуляторов на основе соединений лития: литий-ионных, литий-оксидных, литий-полимерных (Дж.Гуденаф, С.Уиттингем, А.Ёсино Нобелевская премия 2019 г.). Преимущества этих источников тока оказались настолько значительны, что мировое потребление лития увеличилось на порядок, и достигло к 2022 г. 130 тыс. т (годовой рост на 21%). При этом доля расходования лития для производства источников тока достигла 80%. Прогнозируется дальнейший рост потребления лития до уровня 500 тыс. т к 2030 г.
- В связи с эти возникла проблема рециклинга (повторного использования) лития (а также Со) из отработавших источников тока, в первую очередь аккумуляторов из электромобилей.

- **Добыча**. Основным источников лития до настоящего времени остаются месторождения литиевых метасоматитов. Крупнейший поставщик Австралия, обеспечивающая около половины мировой добычи.
- Повышение спроса на литий привело к открытию нового источника лития рассолов высокогорных бессточных озер. Такие объекты были открыты в начале XXI века в Андах (Чили, Аргентина, Боливия), и недавно в Тибете (Китай). Благодаря большим запасам, простоте и дешевизне технологии добычи эти месторождения оказались более перспективными в сравнении с традиционными источниками.
- Рост цен на Li на мировом рынке (за период 2018-2022 гг. вдвое) может сделать рентабельным добычу лития и из других источников (например, месторождение литиеносных глин Thacker Pass в Неваде, способное в перспективе обеспечить до 25% мировой добычи).
- Разведанные запасы лития в известных месторождениях разных формационных типов составляют сейчас в 26 млн. т (Чили, Австралия, Аргентина, Китай и др.). Прогнозные ресурсы лития (включая нетрадиционные и новые источники) оцениваются в 98 млн. т.

Месторождения литиеносных рассолов.

Наибольшие запасы лития обнаружены в воде горных озер Боливии и Аргентины.

Высокогорные озера – источник лития. Салар-де-Атакама, Чили.

Солончак на высоте около 2300 м, с несколькими заполненными рассолом лагунами, общая площадь 3 тыс. кв.км.

Концентрация Li в рапе лагун до 2,7 г/кг Li. Солончак содержит около 27% всех разведанных мировых запасов лития.

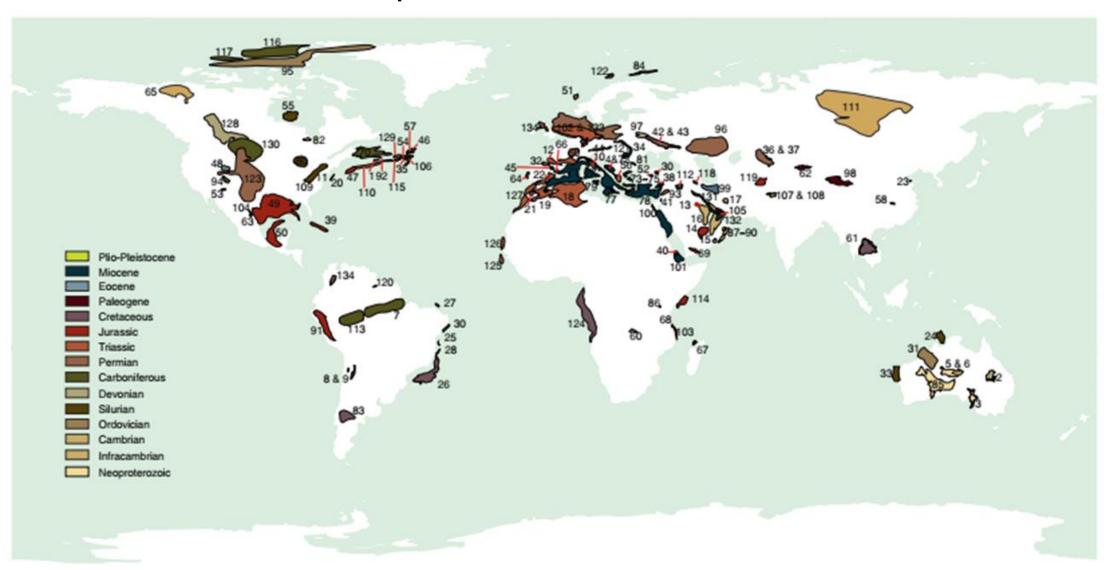
Источник солей – растворение третичных эвапоритов хребта Cordillera de la Sal на западной границе солончака.

Используется межкристальная рапа из мелких скважин, которая затем концентрируется в испарительных бассейнах, доводя содержание Li до 4,3%. Li осаждается в форме карбоната добавлением соды.

Попутно с Li, добываются хлориды и сульфаты К и бораты.

.

- Na является макроэлементом в Земной коре. При относительно невысокой космической распространенности (0,5 % в углистых хондритах) натрий перераспределился в ходе дифференциации мантии в Земную кору, и его содержание в коре достигло 2 %.
- Na моноизотопный элемент.
- Для Na характерен изовалентный изоморфизм с K и гетеровалентный изоморофизм с Ca: Na


| \\
K Ca

- Поскольку Na является породообразующим элементом, он очень минерагенный. Известно (на 2015 г.) 949 собственных минералов натрия.
- Наиболее распространенными из них являются альбит (Na,K)AlSi₃O₈, нефелин NaAlSi₂O₆, а в осадочной оболочке галит NaCl.

- В магматических процессах натрий накапливается в остаточных расплавах и обогащает кислые породы. Очень сильное обогащение натрием (до 6 %) известно в породах щелочного ряда.
- В гидротермальном процессе натрий хороший мигрант, он почти всегда оказывается главным катионом в гидротермальных растворах. При высокотемпературных гидротермальных процессах натрий взаимодействует с вмещающими породами, образуя метасоматические породы (альбитизация).
- В осадочном процессе натрий прекрасный мигрант, он легко переходит в раствор при выветривании, и способен к значительному накоплению в воде. Это главный катион морской воды.
- Осаждение солей натрия требует высокой степени испарения поверхностных вод. При питании солеродных бассейнов морской водой могут образовываться гигантские галитовые месторождения. В условиях континентального галогенеза образуются месторождения сульфата натрия и соды.
- Натрий участвует в биохимических процессах. Наиболее важная его функция поддержание внутриклеточного осмотического давления.
- Натрий не имеет специфической токсичности, ПДК по нему установлен органолептическим показателям (соленость пресной воды не более 1 г/л).

- Соединения натрия (хлориды, карбонаты, сульфаты, и др.) широко используются в промышленности и для бытовых нужд.
- Главный промышленный минерал **галит**, добываемый в огромных масштабах (290 млн. т в год). В настоящее время основным его источником являются соляные месторождения, разрабатываемые шахтным способом. Значительная доля добычи приходится также на соляные озера, где галит осаждается в испарительных бассейнах (обычно, как один из компонентов комплексной переработки с извлечением также K, Br, B, Li и др.). Основные производители Китай, Индия, США.
- В современном мировом хозяйстве используют «синтетическую» соду (аммиачно-хлоридный метод Сольве и др. химические производства, 70% потребления) и природную соду (30% потребления). Природная сода (Na₂CO₃×10H₂O), а также минерал трона (Na₂CO₃×NaHCO₃×2H₂O) добываются шахтным способом, методами подземного растворения и испарением рассолов содовых озер в бессточных котловинах (основной производитель США). В Восточно-Африканском рифте найдены содовые озера, образовавшиеся за счет растворения вулканической карбонатитовой лавы.
- Природный сульфат натрия (**мирабилит** Na₂SO₄×10H₂O) добывается из рапы соляных озер. Мировое производство 4 млн. т. в год, основные производители Китай, США, Турция, Россия.

Крупнейшие эвапоритовые бассейны различного возраста, содержащие толщи галита.

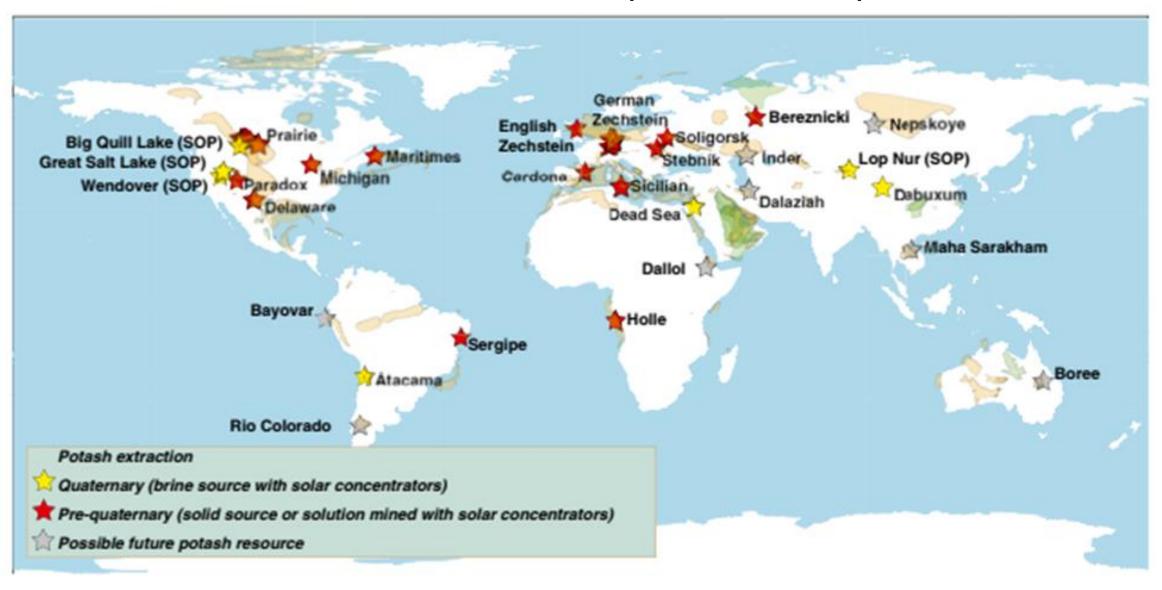
Месторождения соды.

Крупнейшие месторождения соды – осадочные в бессточных котловинах внутриконтинентальных районов и вулканогенно-осадочные, связанные с щелочными и карбонатитовыми вулканами.

• Использование соединений натрия:

- Хлорид натрия используется как основной компонент противогололедных реагентов (около 40% потребления), в химической промышленности (получение газообразного хлора и каустической соды 40%), в качестве консерванта в пищевой промышленности (4 %) и др.
- Карбонат и бикарбонат натрия используются для производства стекла (около 50%), в химических производствах (около 30 %), для получения мыла, очистки воды и отходящих газов и во многих других производствах.
- Сульфат натрия используется в основном для производства синтетических моющих средств (в настоящее время это применение идет на убыль), в стекольной и текстильной промышленности.
- Экологических проблем, вызванных собственно натрием, нет. Это компонент солевого загрязнения, широко проявляющегося на урбанизированных территориях (от противогололедных реагентов), а также на ряде химических и горнорудных производств. Главные проблемы при этом возникают в связи с анионной частью растворенного вещества.

- К в Земной коре является макроэлементом. Космическая распространенность и содержание в мантийных породах у калия очень низки (0,05 % в углистых хондритах, на уровне 0,01 % в мантии). Значительное содержание калия в Земной коре результат сильнейшего перераспределения в ходе дифференциации мантии.
- К имеет два стабильных изотопа 39 К (93,26 %) и 41 К (6,73 %), а также один долгоживущий изотоп 40 К (0,12 %, $\tau \frac{1}{2}$ =1,27 млрд. лет). Последний используется в изотопной геохронологии для датирования геологических объектов (калий-аргоновый метод). Для стабильных изотопов калия в последние годы обнаружены эффекты фракционирования, однако они еще плохо изучены, и в практике геологических и экологических исследований не используются.


• Для К характерен изовалентный изоморфизм с Na и Rb, и гетеровалентный изоморофизм с Ba: Na

- Rb Ba
- К породообразующий элемент, он имеет 418 собственных минералов (на 2015 г.).
- Важное значение из них имеют:
- калиевый полевой шпат KAISi₃O₈,
- лейцит KAISi₂O₆,
- слюды (флогопит, мусковит и др.),
- глинистые минералы, а также
- галогениды сильвин КСІ и карналлит КМgСl₃·6H₂O.

- В магматических процессах калий накапливается в остаточных расплавах и очень контрастно обогащает кислые породы (граниты).
- В гидротермальном процессе калий, как и натрий, является хорошим мигрантом, но в сравнении с натрием он лучше взаимодействует с вмещающими породами. Это проявляется в типичных для гидротермально-метасоматических пород изменениях (калишпатизации, серицитизации, аргиллизации), свойственных высоко- и среднетемпературным фациям метасоматитов.
- При выветривании магматические и метаморфические минералы калия легко разрушаются, но, в отличие от натрия, калий лишь частично переходит в поверхностные воды, из-за сильного захвата в новообразованные глинистые минералы. В результате, при близких содержаниях в исходных породах, в поверхностных водах калия оказывается в несколько раз меньше, чем натрия. В морской воде соотношение Na:K=25:1.
- При испарении морской воды калийные минералы осаждаются на поздней стадии процесса (когда испарилось более 90% исходной воды). Поэтому осадочные месторождения калийных солей, имеющие промышленные масштабы, немногочисленны. Они представляют большую ценность, как источник сырья для удобрений.

- Калий биофильный элемент, необходимый растениям и животным. В наземных экосистемах калий является дефицитным элементов, лимитирующим биологическую продуктивность. Уже в XIX веке началось использование калийных минеральных удобрений для повышения плодородия почв.
- В организмах животных и человека калий выполняет важнейшую биохимическую функцию передачу электрохимического импульса из одной нервной клетки в другую. Нехватка калия в организме может провоцировать нарушения сердечно-сосудистой системы и вызывать мышечные судороги.
- Добыча. Калийные месторождения в галогенных формациях, как правило, разрабатываются шахтным способом. Масштабы этой добычи постепенно возрастают, и в настоящее время превышают 40 млн. т. в год (в 2020-2022 г. добыча снизилась из-за мирового кризиса и введения санкций). Основные производители Канада, Китай, Россия, Белоруссия. Калий добывается также из подземных и озерных рассолов (Мертвое море).
- Использование. 85% добываемого калия используется для производства удобрений.
- Добыча и переработка калийных солей в удобрения экологически опасна вследствие сильного солевого загрязнения почвы, поверхностных и подземных вод отходами этих производств галитовым шламом и рассолами.

Калийные месторождения мира.

Для сравнения цветом показаны галитовые бассейны. [Данные базы SaltWork, version 1.8]

Экологические проблемы производства калийных удобрений.

Отвал хлористого натрия вблизи г. Херингена (Германия), получивший название «Калиманджаро». Расположенное здесь производство калийных удобрений образует отход NaCl. В отвале, накапливающемся уже свыше 40 лет, содержится более 200 млн. т, хлористого натрия.

Рубидий

- Rb в Земной коре микроэлемент. Главная геохимическая особенность рубидия он является геохимическим аналогом калия. Распространенность Rb в 200 раз меньше, чем K, поэтому он в геологических процессах следует за элементом-хозяином, и не образует собственных минералов вследствие изоморфного рассеяния в минералах калия.
- Природный рубидий состоит из двух изотопов стабильного ⁸⁵Rb (72,2 %) и долгоживущего ⁸⁷Rb (27,8 %, т½=49,23 млрд. лет). Последний используется в изотопной геохронологии для датирования древних (домезозойских) геологических объектов (рубидий-стронциевый метод). Из-за большого периода полураспада вариации соотношения изотопов рубидия не могут быть зафиксированы.
- Вследствие близости кристаллохимических свойств К и Rb изовалентный изоморфизм этих элементов весьма совершенен. Это привело к практическому отсутствию собственных минералов рубидия. (Три собственных минерала обнаружены около 20 лет назад в виде микровыделений в редкометальных пегматитах о. Эльба). Весь рубидий, содержащийся в Земной коре, находится в калийных минералах. Рубидий является классическим примером группы рассеянных микроэлементов.

Рубидий

- В природных процессах Rb повторяет геохимическое поведение калия. Отношение K/Rb в горных породах довольно устойчиво, и меняется в интервале от 200 до 400. Это открывает возможность использования отношения K/Rb в качестве генетического индикатора в магматическом процессе.
- Биохимические свойства рубидия не изучены. Известна токсичность рубидия в больших концентрациях. Каких-либо экологических проблем, связанных с этим элементов, не выявлено.
- Использование. Рубидий имеет весьма ограниченную область использования, главным образом, как замена цезия в фотоэлементах, катализаторах, а также в специальной оптике. Имеется применение в фармакологии и пиротехнике. Добыча рубидия за последние два десятилетия была остановлена во всех странах, кроме Китая. Потребности в этом элементе покрываются попутным извлечением при добыче калия и цезия.

Цезий

- Сѕ в Земной коре микроэлемент. Космическая распространенность цезия очень низка (0,19 г/т), на порядок меньше распространенности в Земной коре. За время жизни Земли произошло значительное перераспределение этого элемента из мантии в Земную кору.
- Природный цезий моноизотопный элемент (¹³³Cs). Однако искусственно получены радиоактивные изотопы Сs с массовыми числами от 112 до 151, два из которых имеют большие периоды полураспада (¹³⁵Cs, τ½=2,3 млн. лет; ¹³⁷Cs, τ½=30,17 года). Последний, являющийся продуктом деления урана при работе атомных реакторов и взрывах атомных бомб, представляет большую экологическую опасность.
- Кристаллохимический радиус иона Cs+ близок к радиусу K+ и Rb+, что открывает возможность изовалентного изоморфизма между этими элементами. Однако этот изоморфизм не столь совершенен, как между K+ и Rb+. Вследствие этого, у цезия обнаружено более 20 собственных минералов, один из которых поллуцит (Cs, Na)₂Al₂Si₄O₁₂·H₂O образует даже промышленные месторождения источник этого элемента.

Цезий

- По геохимическому поведению цезий в основном повторяет судьбу калия. В магматических процессах цезий накапливается в остаточных расплавах. Он обогащает магматические породы кислого состава, и в еще большей степени постмагматические образования пегматиты. Именно в пегматитах обнаружены собственные минералы этого элемента и его промышленные скопления.
- В гидротермальных процессах Cs вымывается из пород и в основном рассеивается. Это же поведение цезий проявляет и в осадочном процессе.
- Специальные исследования поведения цезия при взаимодействии растворов с глинами (проведенные в связи с проблемами подземного захоронения радиоактивных отходов, содержащих ¹³⁷Cs) показали кристаллохимическое отличие цезия от калия: если ионы K+ фиксируются в межслоевых позициях в кристаллической решетке глин, более крупный ион Cs+, как выяснилось, предпочтительно занимает позиции на оборванных торцах алюмосиликатных слоев.
- Биогеохимические функции цезия не изучены, и его роль в биосфере остается неизвестной.

Цезий

- Использование. Цезий применяется в фотоэлементах и фотоумножителях, детекторах излучения, инфра-красной оптике, в качестве катализатора в органическом синтезе, для получения лекарственных препаратов. Есть перспективы применения цезия в МГД-генераторах и космической технике.
- Недавно было предложена технология консервации (глушения) газовых и нефтяных скважин с использованием растворов формиатов калия и цезия (в смеси с антикорозионными добавками), имеющих очень большой удельный вес.. Вследствие этого потребность в соединениях цезии в последние годы стала существенно расти.
- Добыча. Основным источником цезия являются поллуцитовые руды в редкометальных пегматитах. Достигнутые объемы добычи Cs около 200 т в год. Наибольшими разведанными запасами этого элемента располагают Канада, Намибия и Зимбабве.
- Большую экологическую проблему представляет загрязнение окружающей среды радионуклидом ¹³⁷Cs (τ½=30,17 года). Этот изотоп подвижен в биосфере, для него до сих пор не разработаны приемы дезактивации почвы. Выбросы этого нуклида, связанные с испытаниями атомного оружия в середине XX века и авариями на радиохимических заводах и АЭС образовали к настоящему времени глобальный радиационный фон.