Тема 3. Галогены

Гапогены

-	1 A								JI	UI	CI								VIII A
1	1,00794 1 H																		4,00260 2 He
		II A												III A	IV A	VA	VIA	VII A	
	водород	2												13	14	15	16	17	ГЕЛИЙ
6,941 9,01218										15,9994	18,9984	20,1797							
2	3 Li	BLI 4Be 5 5B 6C 7N 1								80	9 F	10 Ne							
	литий	БЕРИЛЛИЙ												БОР	УГЛЕРОД	A3OT	кислород	ФТОР	HEOH
	22,9898	24,3050												26,9815	28,0855	30,9738	32,065	35,453	39,948
3	11 Na	12 Mg		III B	IV B	VB	VIB	VII B		VIII B		IB	IIB	13 A l	14 Si	15 P	16 S	17 CI	18 A r
	НАТРИЙ	МАГНИЙ		3	4	5	6	7	8	9	10	11	12	АЛЮМИНИЙ	КРЕМНИЙ	ФОСФОР	CEPA	ХЛОР	АРГОН
	39,0983	40,078		44,9559	47,867	50,9415	51,9961	54,9380	55,845	58,9332	58,6934	63,546	65,38	69,723	72,63	74,9216	78,96	79,904	83,798
4	19 K	20 Ca		21 SC	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 C u	30 Z n	31 G a	32 Ge	33 As	34 Se	35 Br	36 K r
	КАЛИЙ	КАЛЬЦИЙ		СКАНДИЙ	HATNT	ВАНАДИЙ	XPOM	МАРГАНЕЦ	ЖЕЛЕ3О	КОБАЛЬТ	НИКЕЛЬ	МЕДЬ	цинк	ГАЛЛИЙ	ГЕРМАНИЙ	мышьяк	СЕЛЕН	БРОМ	криптон
	85,4678	87,62		88,9058	91,224	92,9064	95,96	[98]	101,07	102,905	106,42	107,868	112,411	114,818	118,710	121,760	127,60	126,904	131,293
5	37 Rb	38 Sr стронций		39 Y	40 Zr цирконий	41 Nb ниобий	42 МО молибден	43 TC	44 Ru	45 Rh РОДИЙ	46 Pd	47 Ag	48 Cd кадмий	49 ln индий	50 Sn олово	51 Sb	52 Те	53 иод	54 Xe
	132,905	137,327		174,967	178,49	180,948	183,84	186,207	190,23	192,217	195,084	196,967	200,59	204,383	207,2	208,980	[209]	[210]	[222]
6	55 Cs	56 Ba	î	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 ir	78 Pt	79 A u	80 Hg	81 T I	82 Pb	83 Bi	84 Po	85 At	86 Rn
	ЦЕЗИЙ	БАРИЙ		ЛЮТЕЦИЙ	ГАФНИЙ	ТАНТАЛ	ВОЛЬФРАМ	РЕНИЙ	ОСМИЙ	иридий	ПЛАТИНА	золото	РТУТЬ	ТАЛЛИЙ	СВИНЕЦ	ВИСМУТ	полоний	ACTAT	РАДОН
	[223]	[226]		[262]	[267]	[270]	[271]	[274]	[277]	[278]	[281]	[281]	[285]	[286]	[289]	[289]	[293]	[294]	[294]
7	87 Fr Франций	88 Ra	* *	103 Lr лоуренсий	104 Rf	105 Db	106 Sg	107 Bh	108 HS		110 DS			113 Uut	114 FI ФЛЁРОВИЙ	115 Uup	116 LV ливерморий	117 Uus	118 Uuo

*Л	ΙAΗ	ΙΤΑ	HO	ИΩ	Ь
				7.7	-

* * АКТИНОИДЫ

138,905	140,116	140,908	144,242	[145]	150,36	151,964	157,25	158,925	162,500	164,930	167,259	168,934	173,054
57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb
ЛАНТАН	ЦЕРИЙ	ПРАЗЕОДИМ	НЕОДИМ	ПРОМЕТИЙ	САМАРИЙ	ЕВРОПИЙ	ГАДОЛИНИЙ	ТЕРБИЙ	диспрозий	гольмий	ЭРБИЙ	ТУЛИЙ	ИТТЕРБИЙ
[227]	232,038	231,036	238,029	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]
89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No
АКТИНИЙ	ТОРИЙ	ПРОТАКТИНИЙ	УРАН	нептуний	ПЛУТОНИЙ	АМЕРИЦИЙ	КЮРИЙ	БЕРКЛИЙ	КАЛИФОРНИЙ	ЭЙНШТЕЙНИЙ	ФЕРМИЙ	менделевий	НОБЕЛИЙ

Свойства галогенов

Элемент	F	CI	Br	I
Атомный номер	9	17	35	53
Валентности	–1	-1	– 1	- 1, 0, +3
Радиус иона, Å	1,33	1,72	1,96	2,13
Координационное число	VI - VIII	VIII - XII	XII	XII
Распространенность, г/т				
- Земная кора	530	220	2	0,5
- ультра-осн. г. п.	100	100	0,12	0,1
- основные г. п.	400	60	3	0,5
- средние г. п.	500	100	4,5	0,3
- кислые г. п.	V 800	200	1,5	0,5
- осадочные г. п.	600	800	6	1
Вода океана, мг/кг	1,3	19 500	67	0,06
ПДК, питьевая вода, мг/кг	1,5	хлорид 350 хлорит 0,2 перхлорат 5	0,2	-
Число минералов	343	342	7	23
Добыча, т в год * - без США	8 800 000* CaF ₂	270 000 000 NaCl 39 000 000 KCl	400 000*	30 000*

Общие свойства галогенов

- Элементы галогены в классификации В.М.Гольдшмидта причислены к классу литофилов.
- F и CI в Земной коре макроэлементы; Br и I микроэлементы.
- Галогены обладают самой высокой электроотрицательностью в своих периодах (F абсолютный «чемпион»). В результате этого галогены существуют в природе в виде ионов с зарядом -1 (иод имеет также валентности 0 и +5).
- Для всех галогенов характерно образование ионных связей.
- Ионы галогенов имеют большие радиусы. В кристаллических решетках минералов они образуют плотнейшие упаковки (КЧ VIII и XII).
- F и CI умеренно минерагенные (из-за сильной растворимости соединений), микроэлементы Br и I относятся к категории рассеянных.

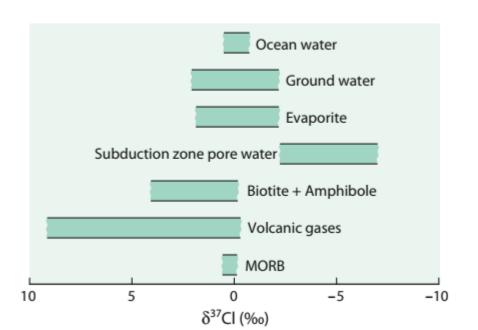
Общие свойства галогенов

- Ионные радиусы F⁻ (1.33 Å) и CI⁻ (1.72 Å) существенно различаются, изовалентный изоморфизм между ними затруднен. При этом радиус F⁻ близок к радиусу OH⁻ (1.40 Å), что определяет хороший изоморфизм между ними. Вг и I кристаллохимически сходны с CI. В результате в твердом веществе Земной коры создаются две геохимические ассоциации F-OH-... и CI-Br-I.
- Галогены характеризуются очень высокими миграционными способностями в геологических процессах.
- Все галогеноводородные кислоты хорошо растворяются в воде и летучи при повышении температуры. В вулканических процессах галогены проявляют свойства *«избыточных летучих»*.
- Соли галогениды, за редкими исключениями, характеризуются большой растворимостью в водных растворах. В силикаты и алюмосиликаты галогены входят в форме дополнительных анионов вместе с ионом ОН-.

Общие свойства галогенов

• В современных технологиях широко используются галоген-замещенные органические соединения, являющиеся *ксенобиотиками*. Для этих веществ в биосфере нет естественных механизмов разрушения. Это порождает серьезные экологические проблемы.

- F нечетный элемент, его космическая распространенность невелика (60 ppm). При дифференциации мантии фтор накапливается в земной коре (распространенность 530 ppm).
- F моноизотопный элемент, искусственно получены его радиоактивные изотопы, все имеющие короткие периоды полураспада.
- Молекулярный фтор сильнейший окислитель, и в природе не может существовать.
- Кристаллохимический радиус иона F⁻ (1.33 Å) близок к радиусу OH⁻ (1.40 Å), что в значительной мере определяет его геохимическое поведение.
- Схема изоморфизма F-: OH-——F


- F минерагенный макроэлемент (343 минералов на 2015 г.). Однако минералов, где он является главным анионом немного. Гораздо чаще фтор выступает в роли дополнительного аниона, изоморфно замещая ОН⁻. Главный собственный минерал фтора флюорит CaF₂.
- Носителями фтора в природе выступают:
 - слюды (мусковит $KAl_2[AlSi_3O_{10}](OH,F)_2$, литиевые слюды)
 - апатит Ca₅(PO₄)₃(OH,F)
 - топаз Al₂[SiO₄](F,OH)₂
 - фтор-карбонаты (бастнезит (Ce,La,Y)CO₃F промышленный минерал на РЗЭ)
- В магматическом процессе F накапливается в остаточных расплавах, однако в меньшей степени, чем другие галогены из-за вхождения в кристаллизующиеся в средних и кислых породах алюмосиликаты (слюды, роговую обманку) и апатит. Высокие содержания фтора фиксируются в карбонатитах. В пегматитах и грейзенах фтор один из главных солевых компонентов.

- F играет важную роль в высокотемпературных гидротермальных месторождениях, являясь в этих условиях хорошим комплексообразователем для таких рудных элементов, как Nb, Ta, Sn. В средне- и низкотемпературных гидротермальных системах фтор образует жильные флюоритовые месторождения (в том числе с редкоземельной минерализацией).
- В осадочном процессе фтор имеет умеренные миграционные возможности из-за контроля растворимостью флюорита, поскольку его противоион кальций один из главных катионов поверхностных вод. Известны осадочные и гидротермально-осадочные стратиформные месторождения флюорита.

- Основная биохимическая функция фтора в организмах животных и человека он входит в состав апатита, слагающего скелет. Вредны как избыток, так и недостаток фтора в воде и продуктах питания, поскольку они нарушают баланс между гидроксил- и фтор-апатитом, и это вызывает заболевания (недостаток остеолороз, кариес, избыток флюороз).
- Поэтому содержания F в питьевой воде регулируются. В Российской Федерации для него установлена ПДК (1,2 1,5 мг/л в зависимости от климатической зоны). Известны ситуации регионального превышения ПДК по фтору в подземных водах (Молдавия).
- Экспертный комитет Всемирной Организации Здравохранения (ВОЗ) установил в 1994 г. норму содержания F в питьевой воде 0,5 1 мг/л (в зависимости от климата). Для нормализации содержаний фтора при водоподготовке используют добавление NaF или фторосиликата натрия (Na₂SiF₆) (США, Австралия и др.). В РФ фторирование воды не применяется.

- Использование. Соединения фтора широко используются в современных технологиях. Основными потребителями являются металлургия (47% флюсы) и органический синтез (20%) производство фреонов и фторопластов, в т.ч. тефлона. Значительная доля добываемого фтора расходуется при производстве алюминия (около 20%). Соединения фтора используются для производства инсектицидов, медикаментов и др.
- В качестве исходного сырья на фтор используется почти исключительно флюорит CaF₂. Его мировая добыча превысила 8 млн. т в год, основные добывающие страны Китай (~65%), Мексика, Монголия.
- Экологические проблемы. Значительные природные аномалии содержания фтора неизвестны (кроме превышения нормативов в подземных водах). Фиксировалось техногенное загрязнение подвижными соединениями фтора, связанное с металлургическими шлаками и отходами химических производств. Эти аномалии считаются потенциально вредными для растительности.
- Многие соединения фтора токсичны (в т.ч. плавиковая кислота).
- Фтор-органические соединения (пластики, фреоны) являются ксенобиотиками.
- Фреоны на основе фтора не оказывают каталитического действия на озон (в отличие от хлор- и гидроксил-фреонов), поэтому в системе мероприятий по защите озонового слоя Земли предусматривается стимулирование перехода на такие хладагенты.

- Хлор относится к числу «малых» макроэлементов. При довольно высокой космической распространенности (700 ppm) оценка его содержания в верхней мантии всего 30 ppm это следствие перераспределения хлора во внешние оболочки Земли при ее дифференциации. Однако и в Земной коре кларк хлора всего 220 ppm. Основная доля CI (~90 %) находится в гидросфере.
- Хлор имеет два стабильных изотопа: ³⁵Cl (75.78 %) и ³⁷Cl(24.22 %). В природе зафиксировано фракционирование изотопов хлора.

- Природа этого фракционирования еще недостаточно ясна, и пока идет накопление данных. В практике решения геологических задач изотопы хлора еще не используются.
- В последние годы была предпринята попытка использовать изотопный состав хора для разделения природного и техногенного источников перхлоратов при загрязнении природных вод.

- В природе хлор проявляет валентность -1. Газообразный хлор (Cl₂, валентность 0) сильный окислитель, быстро реагирует с водой, вытесняя кислород, и в природе долго не сохраняется. Искусственные соединения Cl с валентными состояниями +1, +5 и +7 используются в различных технологиях и попадают в окружающую среду.
- Кристаллохимический радиус иона CI⁻ (1.72 Å) заметно больше, чем у F⁻ (1.33 Å), что затрудняет изоморфизм между ними в собственных минералах, однако он иногда наблюдается для позиций дополнительных анионов (например, в апатите). Хлоридион выступает изоморфным хозяином для Br⁻, и в меньшей степени для I⁻.
- Схема изоморфизма CI-: [

- Хлор как «малый» макроэлемент умеренно минерагенный, он имеет 342 собственных минерала (на 2015 г.). Ограничителем числа минералов является высокая растворимость хлоридов, из-за чего далеко не все возможные соединения этого класса присутствуют в природе. Для образования многих минералов требуются специфические условия, в первую очередь сильное испарение.
- Наиболее важные минералы хлора **галит** NaCl, также калийные минералы **сильвин** KCl и **карналлит** KMgCl₃⋅6H₂O.
- Известны метаморфические хлор-алюмосиликаты группы скаполита.
- Обычно в породах основным носителем хлора выступают слюды.
- В магматических и метаморфических породах значительная доля обнаруживаемого анализами хлора приходится на микроскопические газово-жидкие включения, содержащие водно-солевые растворы, иногда очень высокой минерализации.

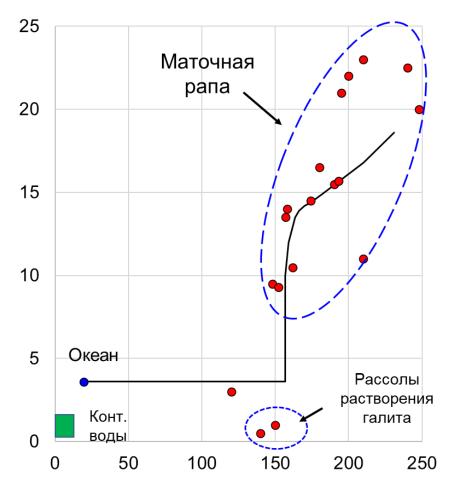
- В магматическом процессе СІ практически не входит в состав кристаллизующихся минералов и накапливается в остаточных растворах-расплавах, отделяясь затем от магматических очагов в составе постмагматических флюидов. Хлор активно участвует в постмагматических процессах пегматитах, скарнах, грейзенах, высокотемпературных гидротермах, являясь там одним из основных анионов в водной среде.
- В гидротермальном процессе хлор обычно является главным анионом. Он играет здесь важнейшую роль в качестве одного из главных комплексообразователей переносчиков рудных элементов. Комплексы с хлоридным ионом установлены для Fe, Mn, Cu, Zn, Pb, Ni, Ag, Au, Hg. При этом сам хлор в твердых продуктах гидротермального процесса (рудах и метасоматитах) практически не удерживается.

- Хлорид-ион главный анион в гидросфере. Морская вода содержит 19,5 г/кг хлора.
- В осадочном процессе хлор прекрасный мигрант. При выветривании горных пород хлор практически полностью переходит в поверхностные воды и переносится в Мировой океан. Удаление хлора из океана происходит за счет образования осадков, пропитанных морской водой, при галогенезе и в виде морских аэрозолей.
- В галогенезе хлор является ключевым элементом. Осаждение главного галогенного минерала галита начинается примерно при восьмикратном упаривании исходной морской воды.
- Солеродные бассейны неоднократно возникали в геологической истории на различных участках суши. По некоторым оценкам, за фанерозойскую историю Земли около 30 % современной суши когда-либо занимались солеродными бассейнами. Однако, доля хлоридных солей в общем объеме осадочного чехла континентов менее 1 %.

- Хлор имеет важные биохимические функции в живых организмах, наиболее заметная из которых поддержание внутриклеточного осмотического давления.
- В организмах животных хлор в виде соляной кислоты входит в состав желудочного сока (~160 ммоль/кг).
- Для человека суточное потребление NaCl 5-10 г (минимальная норма 0,8 г хлоридиона). Опасен как недостаток, так и избыток хлоридов. Использование морской воды для питья (при кораблекрушениях) у большинства людей приводит к воспалению почек нефриту. При тяжелой физической нагрузке в горячих условиях потеря соли через потоотделение может вызывать тепловой удар.

- Использование. Более 60 % добываемых хлоров используется в химической промышленности, в т.ч. для производства газообразного хлора (около 40%), необходимого для получения хлор-органических соединений (пластиков, волокон, синтетического каучука, растворителей, инсектицидов и пр.). Хлориды и соляная кислота используются в разнообразных химических производствах, переработке руд цветных металлов, производстве бумаги и пр. (>20 %).
- Хлорид натрия используется в пищевой промышленности (около 10%). Хлориды калия используются как непосредственно в качестве удобрений, так и для производства калийных удобрений на основе других анионов (нитрата, фосфата, сульфата). Газообразный хлор и гипохлорит применяются при обеззараживании питьевой воды, обезвреживании сточных вод. Значительные объемы соли тратятся на борьбу с обледенением дорог (в США >40 %).
- Добыча галита идет шахтным методом из соляных месторождений и выпариванием поверхностных рассолов (часто комплексно с добычей других видов сырья). Масштабы добычи солей очень велики: галит 270 млн. т в год, калийные соли 39 млн. т, основные мировые производители каменной соли Китай, США, Индия, Германия, калийных солей Канада, Россия, Белоруссия.

- С использованием соединений хлора связаны многие экологические проблемы.
- Хлор-замещенные органические соединения являются *ксенобиотиками*. В природе нет эффективных путей их биологического разложения. Такие соединения уходят из биосферы при разложении в фотохимических процессах и при захоронении в донных осадках.
- Классический пример ксенобиотика **ДДТ**. Этот инсектицид как химическое вещество был синтезирован еще в конце XIX века. В 1939 г. было обнаружено его сильное токсичное действие на насекомых при отсутствии токсичности для теплокровных животных (П.Мюллер, Нобелевская премия 1948 г.). ДДТ был первым надежным средством против вредителей в сельском хозяйстве и бытовых паразитов. Использование ДДТ существенно повысило продуктивность мирового сельского хозяйства. ДДТ успешно применялся при эпидемиях заболеваний, переносимых насекомыми (малярии, тифа, лейшманиоза и др.). Все это привело к широкому производству и применению инсектицида, в том числе и с грубыми нарушениями технологии и безопасности. Максимум производства был достигнут в 1962 (82 тыс. т).
- Особенностями ДДТ являются: 1) нерастворимость в воде, поэтому технология применения инсектицида распыление порошка («дуста»); 2) хорошая растворимость в жирах; вследствие этого ДДТ плохо выводится из пищевых цепей, накапливается в них и очень медленно удаляется из биосферы; 3) микробиологическая деградация переводит ДДТ в его производные (ДДД и ДДЕ), которые далее биологически не разрушаются (соотношение ДДТ и продуктов деградации позволяет отличить «новое» загрязнение от «старого»).


- Токсическое действие ДДТ на человека и животных не достигается при соблюдении технологических норм в сельском хозяйстве и эпидемических мероприятиях, но циркуляция в пищевых цепях, повышающая дозы воздействия, способна привести к негативным последствиям, вплоть до заболеваний водной микрофауны, рыб, птиц и даже человека.
- Выявившиеся негативные экологические и токсикологические последствия применения ДДТ привели к постепенному сокращению и запрету производства ДДТ. В СССР его производство и применение было запрещено в 1970 г. (кроме случаев эпидемий и вспышек размножения вредителей), в США в 1972 г.
- В настоящее время ДДТ включен в список стойких органических загрязнителей (*CO3*) Стокгольмской конвенции 2001 г., к которой присоединилось 183 страны мира. ДДТ входит в группу веществ (В), производство и применение которых разрешено для борьбы с переносчиками опасных заболеваний (в отношении ДДТ – это комары, переносчики малярии).
- За все время в мире произведено около 10 млн. т ДДТ, и произошло глобальное распространение этого вещества. Основная часть этого количества (в виде производных бактериальных метаболитов) до сих пор циркулирует в биосфере.

- Стокгольмская конвенция по CO3 («стойким органическим загрязнителям») регулирует производство и применение более 20 веществ и групп соединений, большая часть которых относится к хлорзамещенным. Часть из них полностью запрещена (список A, все относятся к хлор- и бром-замещенным циклическим соединениям). CO3, помещенные в список C, не производятся преднамеренно, а являются побочными продуктами самых различных производств. В этот перечень входят несколько групп хлорзамещенных циклических соединений ксенобиотиков, таких как диоксины, полихлорированные бифенилы, полихлорированные дибензофураны, обладающие сильнейшим токсическим и канцерогенным действием. Стокгольмская конвенция по CO3 включает меры по прекращению производства, мониторингу окружающей среды, контролю и снижению эмиссии, и уничтожению запасов CO3.
- Монреальский протокол (1987 г.) и последующие документы запрещают (или ограничивают) производство и использование хлор-замещенных фреонов из-за разрушающего действия на озоновый слой в стратосфере;
- Некоторые экологические проблемы, также связанные с соединениями хлора:
 - побочные эффекты обеззараживания воды централизованного водоснабжения методом хлорирования;
 - засоление почв и поверхностных вод урбанизированных территорий противогололедными препаратами;
 - засоление почв орошаемых площадей и загрязнение дренажных вод инсектицидами и дефолиантами (хлоратами и перхлоратами).

- Бром классический рассеянный микроэлемент. Главная его геохимическая черта это спутник хлора. Отношение Br/Cl = 0.003 ÷ 0.01 выдерживается от углистых хондритов до Мирового океана.
- Природный бром состоит из двух стабильных изотопа: ⁷⁹Br (50.56 %) и ⁸¹Br (49.44 %). Имеются очень скудные данные о вариациях изотопного состава Br в природе.
- По кристаллохимическим свойствам Br⁻ (1.96 Å) близок к Cl⁻ (1.72 Å), что определяет совершенный изоморфизм между этими элементами. Поскольку хлора в природе существенно больше, он выступает, как элемент-«хозяин», а бром как изоморфный спутник.
- Следствием этого является практическое отсутствие собственных минералов Br (7 редчайших бромидов на 2015 г.). Весь бром в природе изоморфно распределен в хлоридных минералах, в морских водах и подземных рассолах.

- Почти во всех природных процессах бром повторяет геохимию хлора в магматическом, гидротермальном процессе (обнаружены даже бромидные комплексы рудных металлов, но вклад их в рудообразование мал из-за низкой концентрации лиганда), при выветривании, терригенном осадконакоплении. Это приводит к большой устойчивости отношения Br/Cl в океане оно составляет 0,003.
- Известно только два природных процесса, в которых проявляются различия в поведении брома и хлора, и которые могут проявиться в нарушении постоянства отношения Br/Cl: 1) накопление Br в водных организмах, 2) накопление Br в рассолах при галогенезе.
- Бром избирательно накапливается водными организмами. При биогенном осадкообразовании бром в составе отмирающей органики поступает в донные отложения, и при диагенезе высвобождается в поровую воду. В результате подземные воды богатых органикой толщ относительно обогащены бромом, и отношение Br/Cl в них может превышать 0,01.

Br/CI*1000

СІ, г/кг

- Еще больший эффект возникает в процессе галогенеза. Главный минерал хлора галит имеет кубическую сингонию. В плотнейшей упаковке его кристаллической решетки небольшая разница кристаллохимических радиусов препятствует изоморфному вхождению Вг. Коэффициент распределения K_D брома между раствором и галитом при 25°C составляет всего 0,045 (при идеальном изоморфизме он должен быть равен 1).
- В результате этого при кристаллизации галита в солеродных бассейнах бром остается в водной фазе и существенно накапливается относительно хлора. При этом отношение Br/Cl может достигать 0,015 0,025. Рост этого отношения замедляется, когда при развитии галогенеза начинает отлагаться карналлит KMgCl₃·6H₂O (ромбический), у которого K_D >1.
- Высокие отношения Br/Cl наследуются при захоронении маточных рассолов солеродных бассейнов в осадочной оболочке и сохраняются в геологическом времени.
- Напротив, рассолы, получающиеся при растворении галитовых толщ приобретают очень низкие отношения Br/Cl, на уровне 0,0005 0,001. Такие низкие отношения свойственны и речным водам, что указывает на вклад их подземного питания.
- Таким образом, отношение Br/Cl являются надежным геохимическим индикатором происхождения подземных рассолов (захороненных седиментогенных *vs* рассолов растворения).

- Биохимические функции брома весьма ограничены, и каких-либо эндемических проявлений, связанных с этим элементом, не известно. Бром участвует в биологических процессах, установлено биологическое метилирование брома (CH₃Br) в морских растениях.
- Элементарный бром (пары и водный раствор) очень токсичен, однако в природе он не образуется. Соли бромиды относительно безвредны и используются в медицине как успокаивающие средства.

- Использование и добыча. Бром используется в органическом синтезе для получения бром-замещенных органических соединений пластиков, пестицидов, растворителей, «тяжелых жидкостей». Соли брома широко используются для производства противопожарных пропиток древесины и других волокнистых материалов.
- Дибромэтан применялся до начала 1980-х годов в качестве присадки к этилированному бензину для предотвращения оседания оксидов свинца внутри двигателей внутреннего сгорания (сейчас не используется).
- Бром может быть использован в производстве фреонов, но бром-замещенные фреоны попали под запрет Монреальского протокола.
- Среднегодовая добыча бромидов составляет сейчас около 400 тыс. т в год. Основными производителями являются Израиль и Иордания (бром извлекается из рассолов Мертвого моря), а также Китай. В России бром и его соединения выпускаются предприятием в г. Красноперекопске, источником брома служат соляные озера, питающиеся подземными рассолами.

- Иод рассеянный микроэлемент.
- По химическим свойствам иод выделяется из группы галогенов. Кроме общей для группы преобладающей валентности -1, иод в природе существует в элементарной форме (главным образом, в виде паров и сорбированным на твердом веществе), а также в форме иодатов IO₃⁻ (валентность +5). Характерно также микробиологическое метилирование с образованием летучего CH₃I.
- Природный иод имеет единственный стабильный изотоп 127 I, и много радиоактивных изотопов. Из них долгоживущими являются 129 I ($\tau\frac{1}{2}$ =1.57 млн. лет), 125 I ($\tau\frac{1}{2}$ =59,7 сут) и 131 I ($\tau\frac{1}{2}$ =8 сут). Экологическое значение из них имеет 131 I, составляющий до 3% продуктов деления урана. 129 I имеет на Земле имеет космогенное происхождение.
- По кристаллохимическим свойствам I⁻ (2.13 Å) довольно близок к CI⁻ (1.72 Å), что создает возможность умеренного изоморфизма между этими элементами при повышенных температурах.
- Собственная минералогия I очень скудна (иодиды и иодаты, 23 минерала, на 2015 г.). Причины этого близость свойств к хлору, высокая растворимость многих соединений, летучесть при повышенных температурах.

- Эндогенная геохимия иода слабо изучена. Аналитически определенные концентрации иода в горных породах следует рассматривать как остаточные вследствие потери иода в летучих формах. В целом поведение иода считается близким к хлору и брому.
- В осадочном процессе иод ведет себя как очень хороший мигрант в водной и воздушной среде.
- Иод биологически активен, сильно накапливается в водных растениях и планктоне. В почвах также фиксируется некоторое накопление иода.
- В морской среде иод подвергается микробиологическому метилированию с образованием летучего CH₃I.

- Биологические функции иода не очень хорошо изучены. В организмах животных и человека иод входит в состав гормонов, вырабатываемых щитовидной железой, которые оказывают многосторонне воздействие на рост, развитие и обмен веществ.
- Недостаток иода в воде и продуктах питания вызывает эндемическое заболевание эндемический зоб. При недостаточном поступлении в организм развивается недостаток тиреоидных гормонов (*гипотиреоз*). Ответной реакцией организма является увеличение объема щитовидной железы, с последующими осложнениями на многие функции организма.
- Профилактика эндемического зоба использование в пищу иодированной поваренной соли (добавки к NaCl небольших количеств 20-40 мг/кг иодида или иодата калия).
- Иод токсичен в элементарной форме в парах. Спиртовой раствор иода используется как сильное обеззараживающее средство (при его применении возникает химический ожог тканей). Солевые формы иода безвредны.

- Использование. Около половины добываемого иода используется в бытовых целях как пищевые микродобавки для человека и животных, в фармацевтике, для дезинфекции и т.п. В промышленности иод используется для производства компонентов жидкокристаллических дисплеев, галогенных ламп, литий-ионных аккумуляторов и как стабилизаторы синтетического волокна.
- Добыча. Мировая добыча соединений иода превышает 30 тыс. т в год. Крупнейшим производителем иода является Чили, где иод извлекается попутно при разработке месторождений гуано на островах и тихоокеанском побережье Южной Америки (иод присутствует в гуано в виде примесей иодидов и иодатов).
- Традиционными источниками иода являются также сбор морских водорослей с сублимацией иода при их сжигании (Япония), и добыча из подземных вод (США, Туркмения, Иран).

- Существенную экологическую проблему составляет радионуклид ¹³¹I (τ_½=8 сут.). Этот изотоп образуется в продуктах деления U и Pu, в которых он может содержаться в количестве до 3% от суммы радионуклидов.
- Этот радионуклид может попасть в окружающую среду при авариях на атомных электростанциях. Во время аварии на Чернобыльской АЭС он представлял основную радиационную опасность в течение первой недели после взрыва. ¹³¹І благодаря своей летучести распространялся по воздуху от АЭС. Радионуклид является β-излучателем, что уменьшает его радиационное воздействие. Но, к сожалению, при поступлении с воздухом в организм человека ¹³¹І фиксируется в щитовидной железе, что усугубляет его вредоносность. Через несколько недель после Чернобыльской аварии опасность ¹³¹І сильно снизилась из-за короткого времени полураспада. В качестве меры профилактики от поражения радионуклидом ¹³¹І практиковался прием йодистого калия в форме таблеток, чтобы усилить выведение иода из организма.