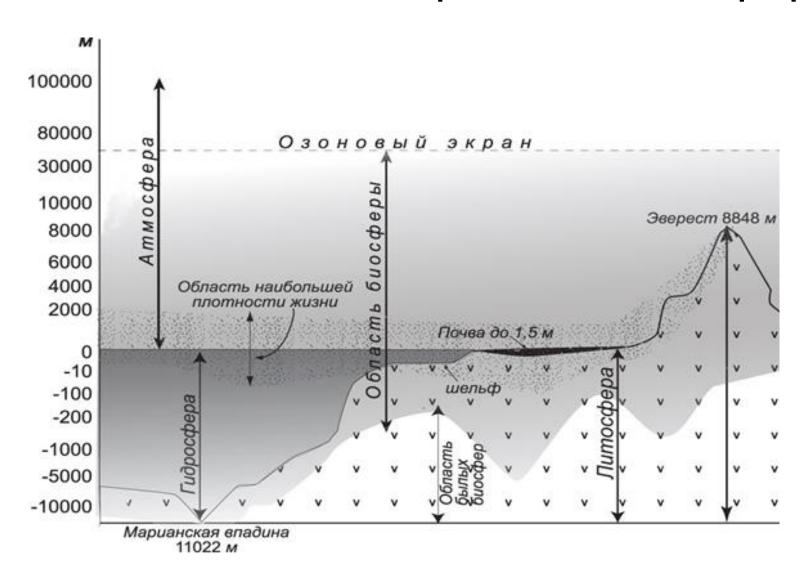
Тема 20. Геохимия биосферы


Определение понятия биосфера.

Термин «биосфера» впервые использовал Э.Зюсс в работе «История Альп» (1875). Биосфера при этом понималась, как «живой покров Земли» (современный эквивалент – «живое вещество»).

Современное понимание термина введено В.И.Вернадским в книге «Биосфера» (1925).

Биосфера – это область, занятая жизнью и находящаяся под ее влиянием.

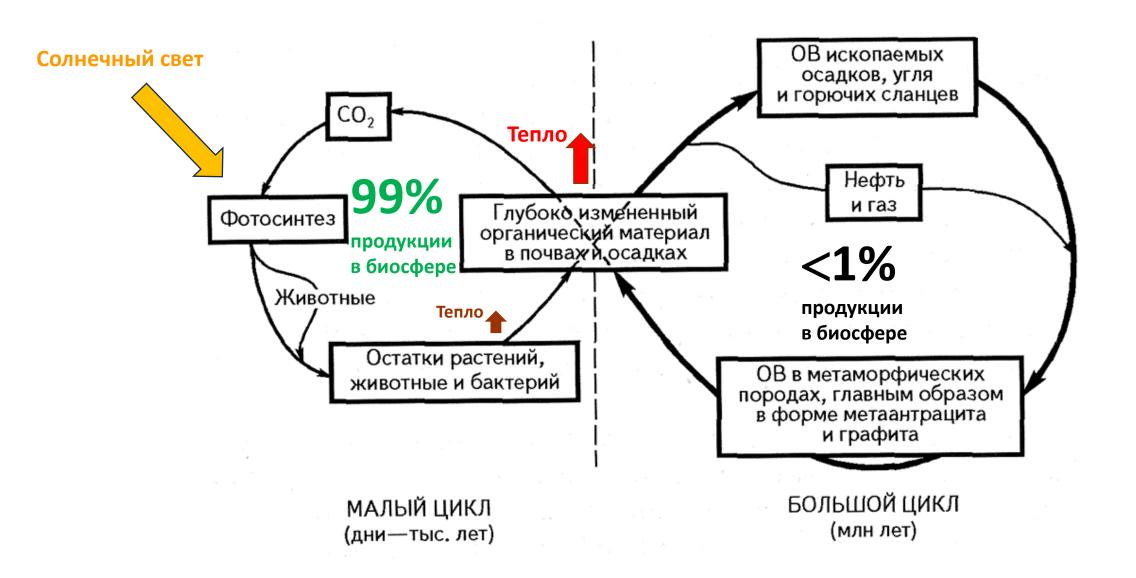
Границы биосферы

Положение области биосферы во внешних оболочках Земли (По Г.Б.Наумову, 2010)

Строение биосферы

В составе биосферы В.И.Вернадский выделил четыре принципиальных компонента;

- живое вещество;
- органическое [биогенное] вещество;
- биокосное вещество [неорганическое и смешанное вещество, образовавшееся биологическим путем];
- косное вещество [не несущее следов биологической деятельности].


Относительные массы компонентов биосферы

Компонент	Macca	Во сколько раз больше живого вещества
Живое вещество	2.4×10 ¹⁸ г	≡1
Органическое	2×10 ²² г	8 300
Биокосное (~осадочная оболочка)	3×10 ²⁴ г	1 250 000
Косное вещество	3×10 ²⁵ г	12 500 000
Для сравнения:		
Атмосфера	5×10 ¹⁸ г	2
Гидросфера	1.6×10 ²⁴ г	670 000

Круговорот компонентов биосферы

Вещество	Процесс	Характерное время пребывания τ, лет	
Живое вещество	Образование / деструкция	16	
Органическое вещество	Захоронение / разрушение	4 млн.	
О ₂ атмосферы	Фотосинтез	4500	
CO ₂ атмосферы	Фотосинтез	4	
H ₂ O океана	Испарение	36 тыс.	
H ₂ O океана	Фотосинтез	3,5 млн.	
Макро-ионы океана	Речной сток	1 — 100 млн.	

Биогеохимический цикл углерода

Распределение масс живого вещества на поверхности Земли

	Масса, 10 ¹⁵ г С _{орг}	Продукция, 10 ¹⁵ г С _{орг} /год	Время пребывания, лет
Суша	560	35	16
Океан	7	70	0,1

Проблема океана как пищевого ресурса человечества.

Состав живого вещества

[Проблема формы выражения] На живой вес - С, Н, О

На сухой вес - С, H, O, N, P – биогенные элементы

На вес золы - + Ca, K, Si, Mg, S, Fe, Na, Mn, Cl, ...

Redfield ratio – соотношение C : N : P = 106 : 6 : 1, установленное американским океанографом А.К.Редфилдом для планктона, приблизительно выполняется для широкого круга биологических субстратов, включая мягкие ткани человека.

«Жизненно необходимые» (эссенциальные) элементы

Это элементы, для которых установлены биохимические функции, или в эксперименте получен положительный отклик.

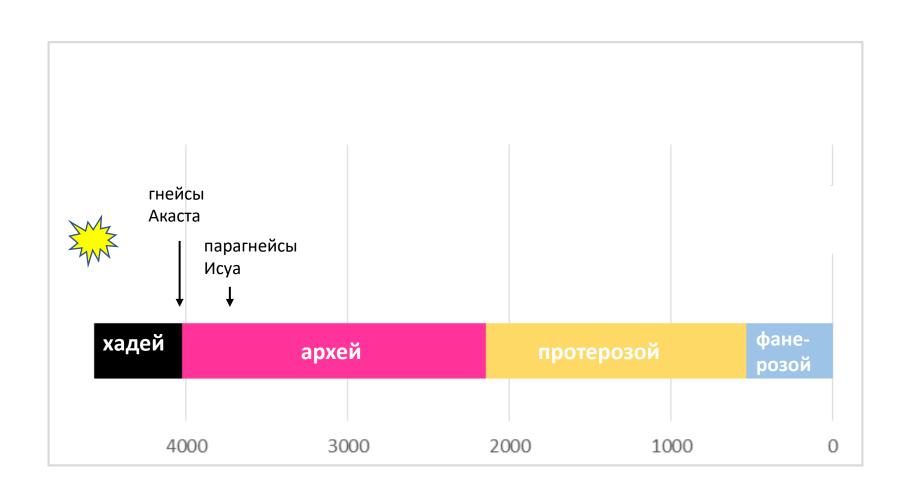
C, H, O, N, P, S, K, Ca Fe, Co, Zn, Cu, Mo, Mn, I, B, V, Ni, Se, ...

Геохимические функции живого вещества

Энергетическая функция описывает производимую живым веществом трансформацию энергии, поступающей из внешних источников, в химически связанные формы, и расходование этой запасенной энергии в жизненном цикле.

Газовые функции описывают участие живого вещества в круговороте газообразных соединений биосферы.

Концентрационная функция описывает биологическое накопление химических элементов в живом, органическом и биокосном веществе.

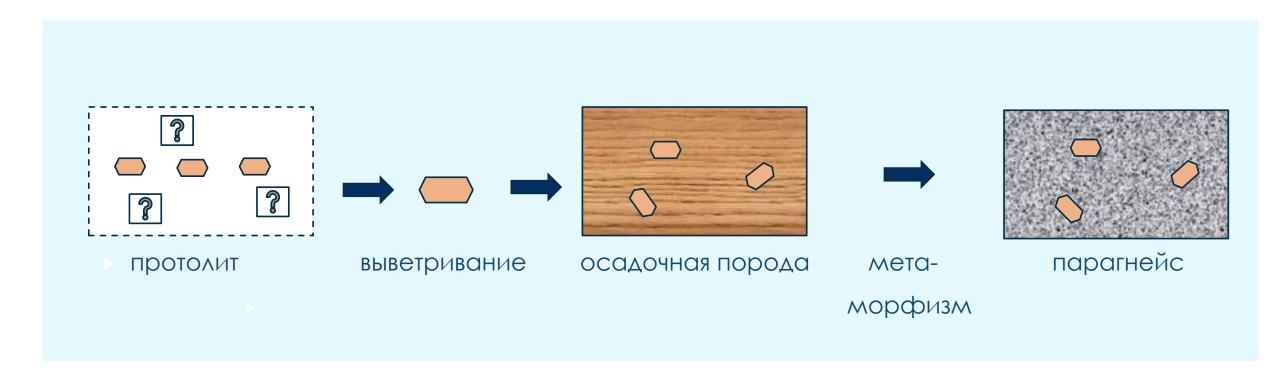

Конструкционная функция описывает создание новых, вне жизни не существующих форм соединений – биогенного вещества.

Поляризационная функция описывает создание в биосфере ее основной геохимической структуры – расщепление на аэробную и анаэробную обстановки.

Транспортная функция описывает создание биогенных веществ, определяющих специфические формы миграции химических элементов в биосфере.

Возраст жизни

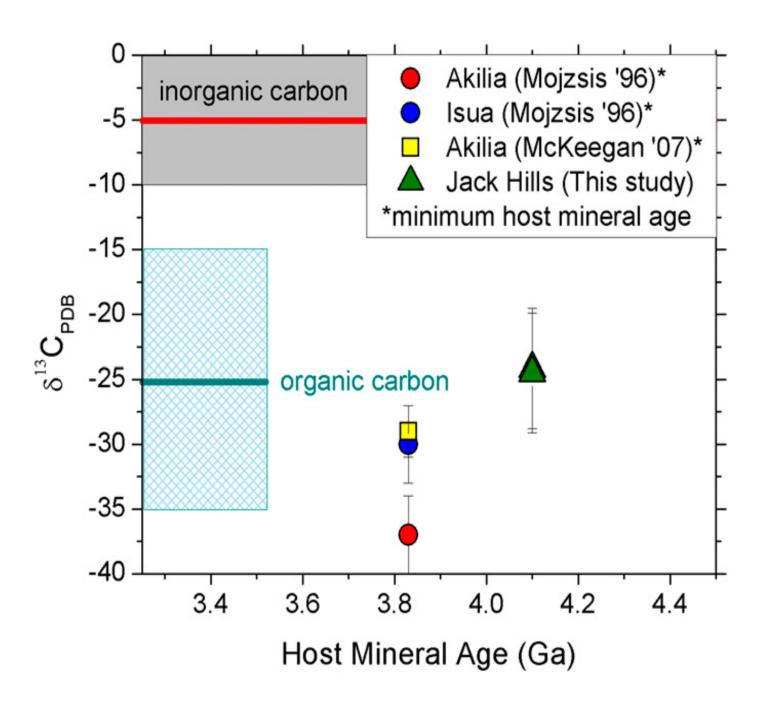
Хронология геологической истории Земли


Время появления биосферы

Метаморфические комплексы Гренландии (3.76 млрд. лет) содержат в составе метаосадочные породы рассеянное органическое веществ с облегченным изотопным составом углерода (δ^{13} C < -20 %) — доказательство протекания биологических процессов, аналогичных современной биосфере.

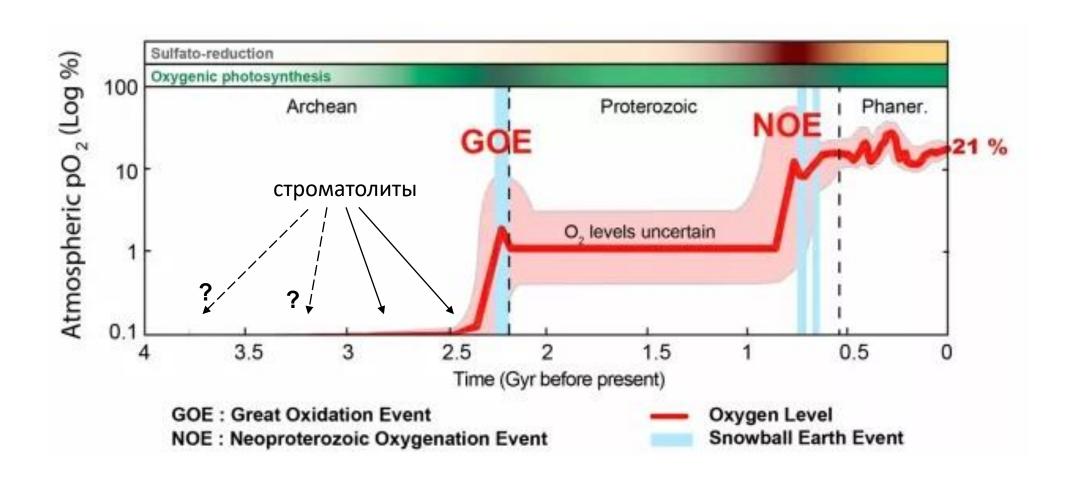
Хадейские «детритные» цирконы - обнаружены зерна цирконов с возрастом 4.1 млрд. лет, в которых присутствуют включения графита с изотопно-легким углеродом. Это признак того, что в состав протолита материнских (для циркона) пород входили осадки, содержавшие органическое вещество биогенного происхождения.

Таким образом, зарождение биосферы уходит в начальный период истории Земли (от которого не сохранилось геологической информации).

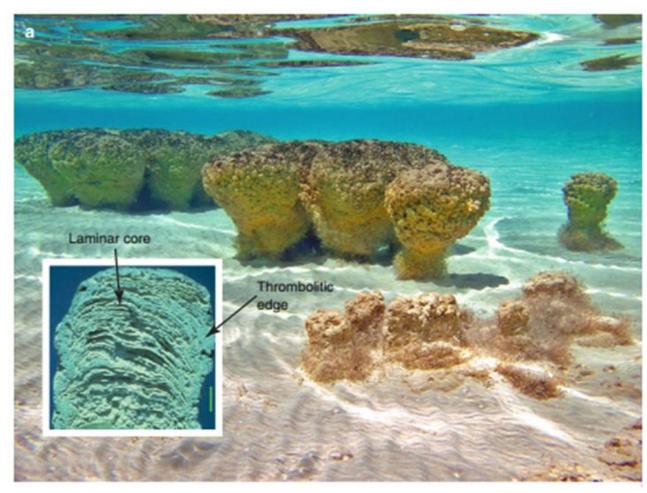

ПРОИСХОЖДЕНИЕ «ДЕТРИТНЫХ» ЦИРКОНОВ

Siliclastic sediments at Jack Hills, Western Australia

Fining-upward sequences consist of basal conglomerates that transition upward into medium-grained sandstones. Each sequence is ~1 meter thick, and well exposed


Изотопный состав графита из первичных включений в хадейских «детритных» цирконах Jack Hills (Зап. Австралия). По (Bell et al., 2015).

Изотопное фракционирование углерода с облегчением на 20-30 ‰ — характерный результат биогеохимического цикла Кальвина — процесса ассимиляции СО₂ и образования органических соединений при фотосинтезе (и хемосинтезе). Этот процесс сейчас отвечает приметно за 90% первичной продукции биосферы.


Деятельность живого вещества как фактор эволюции поверхностных оболочек Земли.

Главное событие – трансформация биосферы в кислородную систему

Возникновение и эволюция кислородной атмосферы Земли. Great Oxygenation Event

Строматолиты – признак появления фотосинтетических организмов.

Самые древние обнаруженные достоверные строматолиты имеют возраст около 2.8 млрд. лет.

Современные строматолиты заказника Hamelin Pool (Австралия). На врезке видна специфическая микрослоистая текстура карбонатного вещества строматолита.

Происхождение биосферы

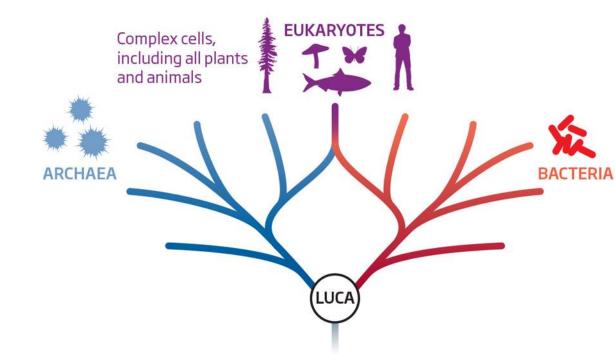
Два возможных варианта:

- 1. Зарождение жизни на поверхности Земли.
- 2. Занос живых организмов на Землю из космоса (гипотеза «панспермии»).

Глобальная проблема естествознания – что такое жизнь? (Анализ состояния проблемы Э.М.Галимова, 2008)

Функциональное определение - способность выполнять определенные действия – метаболизм, рост, воспроизводство, реагирование и адаптацию (Britannica).

- Система саморегулирующихся молекул, способная подвергаться дарвиновской селекции и эволюции (Д.Джойс)
- Это явление возрастающего и наследуемого упорядочения, присущее при определенных условиях химической истории соединений углерода. [предпочтение Э.М.Галимова]


Проблемы доклеточных форм жизни:

- Что это такое?
- При каких условиях они могли существовать?
- Что являлось фактором эволюции?

Концепция LUCA

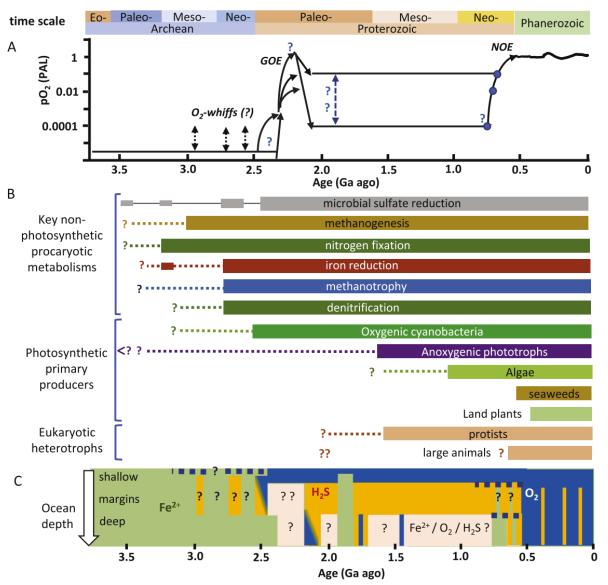
LUCA – Last Universal Common Ancestor (Последний Всеобщий Предок)

От LUCA произошли бактерии и археи. Сравнивая их (в т.ч. - «консервативные фрагменты» РНК), можно узнать устройство LUCA. Возраст LUCA – более 4,1 млрд. лет (сдвиг δ^{13} C).

Возможные свойства LUCA:

Это был строго анаэробный, хемолитоавтотрофный, термофильный организм. Он мог восстанавливать диоксид углерода с помощью водорода при посредстве ацетил-кофермента А.

Для синтеза АТФ он использовал градиенты водорода в окружающей среде.


У LUCA отсутствовали гены синтеза аминокислот, возможно, он получал их из внешней (химически активной) среды.

У LUCA, вероятно, были несовершенные клеточные стенки – мембраны, и он был «лишь наполовину живым», завися от абиотических процессов, протекавших снаружи.

Заблуждения:

- Последний универсальный предок не является первым когда-либо существовавшим организмом, его появлению предшествовала долгая эволюция;
- Это не самый примитивный из возможных организмов;
- Это не единственное существо, жившее в то время на Земле;
- Аналогия условий обитания LUCA с «черными курильщиками» – неполная, поскольку в экосистеме современных «курильщиков» источником энергии являются реакции окисления восстановленных веществ растворенным фотосинтетическим кислородом.

Проблема начальных шагов биологической эволюции

Ко-эволюция жизни и окружающей среды (По Lepot, 2020).

- (A) Изменение парциального давления атмосферного O_2 относительно современного уровня. (Стрелками показаны неопределенности оценок GOE по уровням O_2 и времени).
- (В) Оценки времени появления ключевых метаболизмов (групп организмов): нефотосинтетических прокариотов; фотосинтетических первичных продуцентов; эукариотов-гетеротрофов.
- (С) Реконструкция эволюции химического режима океана:

зеленый – железистый (Fe²⁺) бескислородный; рыжий – бескислородный сульфидный («эвксинский») – результат бактериальной сульфат-редукции [источник сульфата – окисление сульфидной серы кислородом?]; синий – кислородная среда в океане; [розовым цветом показаны интервалы неопределенности].