
Тема 21. Взаимоотношения организма и среды.Биогеохимические провинции

Связь организма с составом среды

«Жизненно-необходимые» элементы

(По В.В.Ковальскому). Жизненно необходимые элементы — для которых установлены биохимические функции, или в эксперименте получен положительный отклик.

(По А. Кабата-Пендиас) Микроэлементы, жизненно важные для растений — это такие, которые не могут быть заменены другими элементами в их специфической биохимической роли и которые имеют прямое влияние на организм, т. е. без них он не может ни расти, ни завершить некоторые метаболические циклы.

(По Э.Андервуду) К эссенциальным микроэлементам относятся те, дефицит которых в организме достоверно приводит к какому-либо патологическому состоянию.

[Википедия] Эссенциальными (или жизненно необходимыми) называют микроэлементы, которые постоянно присутствуют в организме и для которых установлена их исключительная роль в обеспечении жизнедеятельности. Условно эссенциальными называют микроэлементы, в отношении которых накапливается всё больше данных об их важной роли в обеспечении жизнедеятельности организма.

Обычно принято (по классификации Ленинджера): Биофильные макроэлементы — C, H, O, N, P, S [Na, K, Mg, Ca, Cl] Жизненно-необходимые микроэлементы — Fe, Mn, Co, Cu, Zn, B, Al, V, Mo, I, Si (Ni, Se,...)

«Жизненно-необходимые» элементы

Классификация микроэлементов по функциям в организмах растений по Боуэну:

- 1. Входящие в несущий скелет Si, Fe.
- 2. Связанные в антибиотики и порфирины As, B, Br, Cu, Co, F, Fe, Hg, I, Se. Si, V.
- 3. Связанные с протеинами, в том числе энзимы, обладающие каталитическими: свойствами Co, Cr (?), Cu, Fe, Mn, Mo, Se, Ni (?), Zn.
- 4. Фиксированные в больших молекулах, включая накопление, перенос или неизвестные функции Cd, Co, Cu, Fe, Hg, I, Mn, Ni, Se и Zn.
- 5. Связанные с органеллами (например, митохондриями и хлоропластами) Cu Fe, Mn, Mo, Zn.

«Жизненно-необходимые» элементы в свете общего характера связи организм со средой

Один и тот же элемент в зависимости от концентрации в окружающей среде может быть отнесен к жизненно-необходимым или токсичным (пример – Se, I, Zn ...).

Элементы, традиционно относимые к безразличным — в природе и быту не встречаются в концентрациях, при которых они стали бы токсичными (Li, Sc, P3Э и др.)

Токсичность.

Главные механизмы токсичного действия избытка элементов:

- 1. Изменение проницаемости клеточных мембран Ag, Au, Br, Cd, Cu, F, Hg, I, Pb, UO₂.
- 2. Реакции тиольных групп с катионами Ag, Hg, Pb.
- 3. Конкуренция с жизненно важными метаболитами As, Sb, Se, Te, W, F.
- 4. Сродство к фосфатным группам и активным центрам в АДФ и АТФ AI, Be, Y, Zr, P3Э, TMe.
- 5. Замещение жизненно важных ионов (главным образом макрокатионов) Cs, Li, Rb, Se, Sr.
- 6. Захват в молекулах позиций, занимаемых жизненно важными функциональными группами (фосфат и нитрат) арсенат, фторид, борат, бромат, селенат, теллурат, вольфрамат.

Метаболические нарушения в растениях вызываются не только недостатком микрокомпонентов питания, но и их избытком.

В целом растения более устойчивы к повышенным, нежели к пониженным концентрациям элементов.

Толерантность

Сопротивляемость растений действию тяжелых металлов имеет важное значение в связи со многими научными и практическими проблемами:

- 1) геоботанические методы поисков полезных ископаемых: использование толерантных (исследование состава) и чувствительных (появление / отсутствие) растений для поиска рудных месторождений);
- 2) микробиологическая экстрация металлов из бедных руд;
- 3) выращивание растений на токсичных отходах;
- 4) микробиологическая очистка сточных вод;

Повышение толерантности в процессе негативного воздействия => адаптация.

Адаптация.

(На уровне организмов.) Физиологическая адаптация через специфические и неспецифические защитные реакции, направленные на сохранение гомеостаза.

(На уровне популяций.) Адаптация через естественный отбор.

Примеры:

Развитие сопротивляемости микроорганизмов к используемым в медицине, сельском хозяйстве и строительстве антибиотикам, пестицидам и фунгицидам.

При длительном произрастании на почвах с повышенными содержаниями определенных микроэлементов в сообществах растений появляются формы, устойчивые к этим содержаниям. Эта способность может быть развита путем селекции.

Взаимодействие. Антагонизм и синергизм.

Сбалансированность химического состава живых организмов - основное условие их нормального роста и развития. Антагонизм возникает, когда совместное физиологическое действие одного или более элементов оказывается меньше суммы действия элементов, взятых по отдельности, а синергизм - когда совместное действие больше. Такие взаимодействия можно связать со способностью одного элемента ингибировать или стимулировать поглощение других элементов организмами.

Взаимодействия между макро- и микроэлементами показывают, что Са, Р и Мg - главные антагонистические элементы в отношении поглощения и метаболизма многих микроэлементов. Антагонистические эффекты чаще всего реализуются двумя путями: макрокомпонент может ингибировать поглощение микроэлемента, или, наоборот, микроэлемент ингибирует поглощение макрокомпонента (особенно часто для фосфатов).

Для практического применения наиболее важно антагонистическое действие Са и Р на такие опасные для здоровья человека тяжелые металлы, как Ве, Сd, Рb и Ni.

Синергическое взаимодействие между микроэлементами наблюдается реже (установлен, например, синергизм Se и I).

(По Кабата-Пендиас)

Таблица 31. Взаимодействие между макро- и микроэлементами в растениях [251, 381, 531, 554, 663]

Макро- элемент	Антагонизм с микроэлементами	Синергизм
Ca	A1, B, Ba, Be, Cd, Co, Cr, Cs, Cu, F, Fe, Li, Mn, Ni, Pb, Sr, Zn	Cu, Mn, Zn
Mg	Al, Be, Ba, Cr, Mn, F, Zn, Nia, Coa, Cua, Fea	Al, Zn
P	Al, As, B, Be, Cd, Cr, Cu, F, Fe, Hg, Mo, Mn, Ni, Pb, Rb, Se, Si, Sr, Zn	Al, B, Cu, F, Fe,
		Mo, Mn, Zn
K	Al, B, Hg, Cd, Cr, F, Mo, Mn, Rb	-
S	As, Ba, Fe, Mo, Pb, Se	F ⁶ , Fe
N	B, F, Cu	B, Cu, Fe, Mo
C1	Br, I	

^а Данные для микроорганизмов. ⁶ Совместное загрязнение вызывает существенные повреждения растений.

Характер взаимодействия может оказаться различным в зависимости от видового состава и условий произрастания.

Биогеохимические провинции

Биогеохимические провинции – это области на поверхности Земли, в которых в ответ на геохимические факторы (недостаток или избыток определенных химических элементов во внешней среде) у живых организмов возникают соответствующие биологические реакции (по А.П.Виноградову).

Практическое значение выделения биогеохимических провинций — в них могут проявляться специфические эндемические заболевания растений и животных (в т.ч. — человека), вызванные избытком или недостатком определенных микроэлементов в среде обитания.

Концепция биогеохимических провинция разработана В.И.Вернадским и его учениками А.П.Виноградовым и В.В.Ковальским. Районирование территории СССР по принципу биогеохимических провинций имело большое значение для развития сельского хозяйства и здравоохранения страны.

Эндемические заболевания растений, животных и человека – проявления природных биогеохимических провинций.

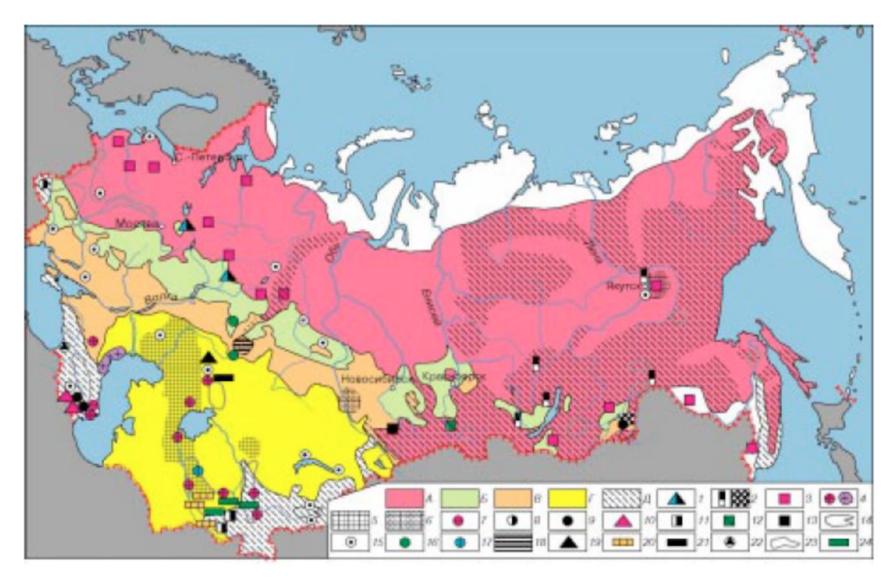
Центральная нечерноземная зона — недостаток в подзолистых почвах многих переходных металлов (Mn, Co, Ni, Cu, Zn, Mo) — развитие разнообразных заболеваний растений и животных (хлороза, анемии, гипокобальтоза и др.), снижение урожайности.

Предуралье – недостаток I в воде и почве – эндемический зоб (гипертрофия щитовидной железы) у человека и сельскохозяйственных животных.

Китай – недостаток Se в воде и почве – болезнь Кешана (кардиомиопатия, в сочетании с вирусной инфекцией).

Малый Кавказ – избыток Мо – эндемическая подагра человека.

Забайкалье – недостаток Са при избытке Sr – уровская болезнь (эндемический рахит). [По другой версии – дефицит Se при избытке P и Mn.]


Заболевания, связанные с дефицитом или избытком микроэлементов объединяются в медицине названием *микроэлементозы*.

Выделение биогеохимических зон и провинций

Выделены биогеохимические зоны биосферы, представляющие собой, как правило, совокупности нескольких биогеохимических провинций:

- 1) **таежно-лесная нечерноземная** биологические реакции организмов обусловлены недостатком Ca, P, Co, Cu, I, B, Mo, Zn.
- 2) **лесостепная, степная черноземная** биологические реакции организмов определяются достаточным количеством Са, Со, Сu, I, иногда недостатком К и Р. Оптимальные условия для растительности.
- 3) **сухостепная, полупустынная, пустынная** биологические реакции организмов связаны с повышенным содержанием Na, Ca, Cl, SO₄, B, недостатком Cu, J, Mn.
- 4) **горные зоны** биологические реакции организмов разнообразны и определяются изменяющимися концентрацией и соотношением многих геохимических элементов.

Схематическая карта биогеохимических зон и провинций (по В.В.Ковальскому).

А – таежно-лесная зона, провинции: 1 – бедные I и Со; 2 – бедные Са, обогащенные Sr; 3 – с недостатком Se; Б – лесостепная зона; В – степная черноземная зона;

Г – сухостепная, полупустынная и пустынная зоны, провинции: 4 – с недостатком Си, избытком Мо и сульфатов; 5 – с избытком В; 6 – с недостатком Си, Со, избытком Мо и В; Д – горные зоны.

Азональные биогеохимические провинции:

7 – богатые Со; 8 – богатые І и Мп;

9 – богатые Pb; 10 – обогащенные Мо; 11

- с избытком Sr и Ca;

12 – обогащенные Se;

13 – с неблагоприятным соотношением Cu, Mo и Pb;

14 – обогащенные U; 15 – с избытком F;

16 – обогащенные Си;

17 – с нарушенным обменом Cu;

18 – богатые Ni, Mg. Sr, бедные Co, Mn;

19 – богатые Ni; 20 – обогащенные Li;

21 – обогащенные Ст; 22 – обогащенные

Mn; 23 – с недостатком F;

24 – с избытком Zn.

Причины возникновения биогеохимических провинций

Климат → преобладающий почвообразующий процесс. Пример: подзолы Центральной нечерноземной зоны (альтернатива – Черноземная зона, оптимальный баланс микроэлементов, высокая урожайность)

Подпочвенный субстрат.

Примеры: Предуралье, недостаток I - эндемический зоб; Малый Кавказ, избыток Мо - эндемическая подагра.

Антропогенное региональное загрязнение.

Пример: Япония - болезнь Минамата, следтвие загрязнение Hg.

Практическое значение выделения биогеохимических провинций

Если известен негативно действующий природный геохимический фактор, вызывающий эндемические заболевания, его можно попытаться компенсировать соответствующими агротехническими или медико-санитарными (в случае заболеваний человека) мероприятиями.

Примеры:

- внесение микроудобрений с Co, Mn, Cu, Mo и другими микроэлементами в Центральной нечерноземной зоне;
- использование йодированной поваренной соли.

Проблема легко решается, если заболевание связано с недостатком микроэлемента. В случае избытка простых решений нет.

Что можно сделать?

Использование грунта, загрязненного тяжелыми металлами, для получения экологически безопасной продукции возможно при применении агротехнических приемов, снижающих биологическую доступность этих элементов для растений.

Эффективные приемы такой обработки – внесение суперфосфата и/или известкование почв. При этом поступающие в почву фосфаты и карбонаты образуют с тяжелыми металлами труднорастворимые соединения, менее доступные для корневой системы растений.

По сути – это проявление антагонизма элементов во внешней среде растений.