Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Московский государственный университет имени М.В. Ломоносова Геологический факультет

УТВЕРЖДАЮ)
Декан Геологі	ического факультета
академик	/п ю п
	_/Д.Ю.Пущаровский/
«» _	20 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Термодинамическое моделирование эколого-геохимических систем

Авторы-составители: Гричук Д.В., Липатникова О.А.

Уровень высшего образования: *Магистратура*

Направление подготовки:

05.03.01 Геология

Направленность (профиль) ОПОП:

Экологическая геология

Магистерская программа

Экологическая геология

Форма обучения:

Очная

Рабочая г	ірограмм	а рассмотрен	на и одобрена
Учебно-методическим Со	оветом Ге	еологическог	о факультета
(протокол	No	,)

Москва 20

Рабочая программа дисциплины (модуля) разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки «Геология» (программы бакалавриата, магистратуры, реализуемых последовательно по схеме интегрированной подготовки) в редакции приказа МГУ от 30 декабря 2016 г.

Год (годы) приема на обучение – 2018.

[©] Геологический факультет МГУ имени М.В. Ломоносова Программа не может быть использована другими подразделениями университета и другими вузами без разрешения факультета.

Цель и задачи дисциплины

Целью дисциплины "Термодинамическое моделирование эколого-геохимических систем" является освоение методов и приемов термодинамического моделирования геохимических процессов в природно-техногенных системах.

Задачи — приобретение знаний об особенностях и ограничениях применения термодинамического моделирования к низкотемпературным природным процессам, освоение методики проведения термодинамических расчетов с помощью программного комплекса HCh, овладение навыками термодинамического моделирования геохимических процессов, знакомство с возможными ошибками при постановке и интерпретации задач моделирования, актуальных для экологической геохимии.

- **1. Место** дисциплины в структуре ОПОП ВО вариативная часть, профессиональный цикл, профессиональные дисциплины по выбору, курс II, семестр 3.
- **2.** Входные требования для освоения дисциплины, предварительные условия: освоение программы бакалавриата по профилю «Экологическая геология», дисциплин «Термодинамика природных процессов», «Моделирование взаимодействия «вода-порода»», «Термодинамическое обеспечение моделирования геохимических процессов».

Дисциплина необходимо в качестве предшествующей для научно-исследовательской работы и выполнения выпускных квалификационных работ.

3. Результаты обучения по дисциплине, соотнесенные с требуемыми компетенциями выпускников.

Компетенции выпускников, формируемые (полностью или частично) при реализации дисциплины:

- ОПК-2.М Способность самостоятельно формулировать цели работы, устанавливать последовательность решения профессиональных задач (формируется частично);
- ОПК-4.М Способность применять на практике знания фундаментальных и прикладных разделов дисциплин, определяющих профиль подготовки (формируется частично);
- ОПК-5.М Способность использовать современные вычислительные методы и компьютерные технологии для решения задач профессиональной деятельности (формируется частично);
- ПК-3.М Способность самостоятельно проводить научные исследования с помощью современного оборудования, информационных технологий, с использованием новейшего отечественного и зарубежного опыта (формируется частично);
- ПК-4.М Способность создавать и исследовать модели изучаемых объектов на основе использования теоретических и практических знаний в области геологии (формируется частично).

Планируемые результаты обучения по дисциплине:

Знать: законы равновесной термодинамики; основные методы и подходы, используемые для термодинамического моделирования природных процессов; особенности постановки задач и интерпретации результатов при моделировании низкотемпературных процессов; типичные задачи моделирования природно-техногенных систем.

Уметь: проводить физико-химические расчеты состояния природно-техногенных систем с помощью программных комплексов HCh и Visual MINTEQ.

Владеть: навыками подготовки задач в программных комплексах HCh и Visual MINTEQ, проведения расчетов, моделирующих протекание процессов, характерных для природнотехногенных систем.

- 4. Формат обучения лекционные и семинарские занятия.
- **5.** Объем дисциплины (модуля) составляет 2 з.е., в том числе 42 академических часа, отведенных на контактную работу обучающихся с преподавателем (14 часов занятия

лекционного типа, 28 часов — занятия семинарского типа), 30 академических часов на самостоятельную работу обучающихся. Форма промежуточной аттестации — экзамен.

6. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и виды учебных занятий

Краткое содержание дисциплины (аннотация):

- В курсе "Термодинамическое моделирование эколого-геохимических систем" рассматриваются следующие вопросы:
 - теоретические основы химической термодинамики;
- используемые подходы при моделировании природных процессов, ограничения метода, типичные эколого-геохимические задачи, верификация моделей;
- знакомство с существующими базами данных термодинамических констант устойчивости комплексных соединений;
- организация программного комплекса термодинамического моделирования HCh, требования к входным данным, конструкция входных файлов; способы организации расчетов при моделировании процессов;
- организация программного комплекса термодинамического моделирования Visual MINTEQ, интерфейс, требования к входным данным, использование меню и опций для импорта и экспорта данных в/из Excel;
- расчет форм нахождения микроэлементов в поверхностных водах с использованием программ HCh for Windows и Visual-MINTEQ с учетом и без учета комплексообразования с органическими кислотами;
 - методика и особенности интерпретации результатов моделирования.

Наименование и краткое содержание	Всего	В том числ	e			
разделов и тем дисциплины (модуля), Форма промежуточной аттестации по	(часы)					Самостоятельная работа обучающегося, часы *
дисциплине (модулю)		Занятия лекционного типа	Занятия лабораторного типа	Занятия семинарского типа	Всего	
Раздел 1. Моделирование природных процессов – теоретические основы и принципиальные подходы.		4		_	4	Подготовка к контрольному опросу, 2 часа
Раздел 2. Базы данных термодинамических констант устойчивости комплексных соединений		-		6	6	Составление баз данных, 6 часов
Раздел 3. Программный пакет HCh: использование для решения эколого-геохимических задач		4		12	16	3 расчетно-графических работы, 8 часов
Раздел 4. Программный пакет Visual- MINTEQ		2		10	12	1 расчетно-графическая работа, 6 часов
Раздел 5. Моделирование эколого- геохимических систем: решения, ограничения, ошибки пользователей.		4		_	4	Подготовка к контрольному опросу, 2 часа
Промежуточная аттестация экзамен Итого	72		4	2		6 часов 30

Содержание разделов дисциплины:

1. Моделирование природных процессов – теоретические основы и принципиальные подходы.

Методология моделирования. Проблемы при применении термодинамического моделирования к гипергенным процессам (причины, следствия, способы преодоления). Теоретические основы моделирования. Метод минимизации термодинамического потенциала системы. Типы химических реакторов по характеру переноса вещества. Типы моделей для описания взаимодействия «вода—порода».

- 2. Базы данных термодинамических констант устойчивости комплексных соединений Знакомство с существующими базами данных термодинамических констант устойчивости комплексных соединений: IUPAC (International Union of Pure and Applied Chemistry), NIST (National Institute of Standards and Technology), JESS (Joint Expert Speciation System). Составление сводных таблиц констант устойчивости комплаксных соединений микроэлементов с неорганическими и органическими лигандами (по вариантам). Обсуждение неоднозначности констант.
- **3.** Программный пакет HCh: использование для решения эколого-геохимических задач База термодинамических данных Unitherm. Понятие квазиэлемента. Выбор значений констант основных комплексов, характерных для природных вод, для внесения в банк данных Unitherm. Создание пользовательской базы данных.

Принципы работы программы Gibbs. Расчет форм нахождения микроэлементов в растворе, при использовании для задания системы опции «Ионы и комплексы»: формулировка геологической модели задачи; формирование файлов *.st, *.bl, *.in; работа с данными; перенос результатов расчетов в Excel, построение графиков и их анализ.

Задание моделируемой системы через опцию «Субстанции»: пересчет аналитических данных макросостава воды на субстанции в Excel, расчеты в программе Gibbs, оценка относительной ошибки расчетов.

4. Программный пакет Visual-MINTEQ

Знакомство с программным пакетом термодинамического моделирования низкотемпературных процессов Visual MINTEQ: установка на персональный компьютер, интерфейс, требования к входным данным, использование меню и опций для импорта и экспорта данных в/из Excel. Обсуждение основных моделей комплексообразования с органическими кислотами, используемых в Visual MINTEQ (Стокгольмская гуминовая модель (SHM) и модель NICA-Donnan): их сходство и различия. Расчет форм нахождения микроэлементов в растворе с учетом и без учета комплексообразования с органическими лигандами. Обработка полученных результатов, построение графиков. Сравнение распределений микроэлементов по формам нахождения, полученных с использованием различных программ термодинамического моделирования.

5. Моделирование эколого-геохимических систем: решения, ограничения, ошибки пользователей.

Примеры успешного применения моделирования в экологической геохимии. Роль экспериментальных исследований в создании теоретических моделей. Представление метастабильных состояний в равновесных моделях природных систем. Характерные примеры ошибок при применении термодинамического моделирования к

Характерные примеры ошибок при применении термодинамического моделирования к гипергенным процессам, в том числе — в эколого-геохимических исследованиях.

7. Фонд оценочных средств (ФОС) для оценивания результатов обучения по дисциплине (модулю)

7.1. Типовые контрольные задания или иные материалы для проведения текущего контроля успеваемости.

Текущий контроль усвоения дисциплины проводится путем контрольных опросов по теоретическим разделам курса и выполнения расчетно-графических работ по практическим разделам.

Примерный перечень вопросов на контрольных опросах:

По разделу 1 Моделирование природных процессов – теоретические основы и принципиальные подходы.

- 1 Методология моделирования природных процессов (привести и описать схему используемого подхода).
- 2 Преимущества и недостатки метода минимизации и метода констант равновесия с позиций пользователя в экологической геохимии.
- 3 Классификация химических реакторов по характеру переноса вещества.
- 4 Типы моделей, предложенных для описания взаимодействия «вода-порода».
- 5 Способы представления кинетики процессов в задачах, решаемых методом равновесной
- 6 Способ включения органического вещества в задачи, решаемые методом минимизации термодинамического потенциала.

По разделу 5 Моделирование эколого-геохимических систем: решения, ограничения, ошибки пользователей.

- 1 Характерные типы эколого-геохимических задач, успешно решаемые методами термодинамического моделирования.
- 2 Соотношение экспериментального и теоретического моделирования в экологической
- 3 Природа препятствий для применения равновесного моделирования к низкотемпературным природным системам.
- 4 Пути представления многообразия форм нахождения токсичных элементов в термодинамических моделях.
- 5 Существо проблемы «back-reactions» при описании процессов с фильтрацией воды.
- 6 Почему при моделировании обязательна процедура верификации?

Перечень практических заданий для проведения текущего контроля:

Название	Содержание
Составление баз данных констант	Подготовка сводных таблиц по константам
устойчивости комплексных	устойчивости неорганических и органических
соединений	соединений Cu, Zn, Cd и Pb, используемых в
	различных базах данных (по вариантам).
	Проанализировать различия в значениях констант.
Ввод в банк данных Unitherm и	Добавление пользовательского элемента Fu.
редактирование информации.	Выбор значений констант устойчивости основных
Создание пользовательской базы	комплексных соединений, характерных для
данных.	природных вод (гидроксокомплекс, хлоридный,
	сульфатный, карбонатный, фульватный), которыми
	будет дополнен банк данных Unitherm, на основании
	составленных при выполнении первой
	самостоятельной работы таблиц Обоснование
	сделанного выбора.
	Внесение комплексов и соответствующих констант в
	банк данных Unitherm.
Расчет форм нахождения	Формулировка геологической модели задачи.
микроэлементов в различных по	Подготовка аналитических данных для внесения в
макросоставу поверхностных	программу Gibbs.
водах с использованием	Расчет форм нахождения микроэлементов (Cu, Zn,
программного пакета HCh	Cd, Pb) в поверхностных водах на примере района
	Урупского хвостохранилища в двух вариантах (с
	учетом и без учета комплексообразования с
	органическими кислотами).
	Обработку результатов расчетов каждый студент
	проводит по тому элементу, по которому он готовил

Название	Содержание
	базу данных констант устойчивости комплексных
	соединений. Итоговые значения представляются в
	виде таблиц, в которых указано процентное
	содержание каждого комплекса, а также в виде
	диаграмм, иллюстрирующих формы нахождения
	микроэлементов в различных типах вод. Кроме того,
	дается словесное описание распределения
	микроэлементов в растворе по формам нахождения.
Пересчет макросостава раствора с	Пересчет состава раствора в Excel с ионов и
ионов и комплексов на	комплексов на возможные субстанции.
субстанции	Расчет состава системы в HCh.
	Сравнение количества молей ионов, образовавшихся
	в расчетах с лабораторными аналитическими
	данными и оценка относительной ошибки.
Расчет форм нахождения	Расчет форм нахождения микроэлементов (Cu, Zn,
микроэлементов в различных по	Cd, Pb) в поверхностных водах на примере района
макросоставу поверхностных	Урупского хвостохранилища в трех вариантах (без
водах с использованием	учета комплексообразования с органическими
программного пакета Visual	кислотами и с его учетом по двум используем в
MINTEQ	Visual MINTEQ моделям представления
	растворенного органического вещества: SHM и
	NICA-Donnan).
	Обработку результатов расчетов каждый студент
	проводит по тому элементу, по которому он готовил
	базу данных констант устойчивости комплексных
	соединений. Итоговые значения представляются в
	виде таблиц, в которых указано процентное
	содержание каждого комплекса, а также в виде
	диаграмм, иллюстрирующих формы нахождения
	микроэлементов в различных типах вод. Кроме того,
	дается словесное описание распределения
	микроэлементов в растворе по формам нахождения.

7.2. Типовые контрольные задания или иные материалы для проведения промежуточной аттестации.

Примерный перечень вопросов при промежуточной аттестации:

- 1. Типы моделей для описания взаимодействия «вода-порода».
- 2. Природа препятствий для применения равновесного моделирования к низкотемпературным природным системам.
- 3. Преимущества и недостатки метода минимизации и метода констант равновесия с позиций пользователя в экологической геохимии.
- 4. Термодинамические константы устойчивости комплексных соединений и существующие базы данных по ним.
- 5. Причины неоднозначности термодинамических характеристик веществ.
- 6. Ввод в банк данных Unitherm и редактирование информации. Создание пользовательской базы данных.
- 7. Структура программного комплекса НСh. Типы создаваемых файлов.
- 8. Структура программного комплекса Visual MINTEQ: требования к входным данным, использование меню и опций для импорта и экспорта данных в/из Excel

- 9. Стокгольмская гуминовая модель (SHM) и ее использование в программном комплексе Visual MINTEQ
- 10. Использование модели NICA-Donnan для оценки комплексообразование металлов с органическими кислотами
- 11. Типы задач, для решения которых можно использовать программный комплекс Visual MINTEQ.
- **12.** Примеры задач, для решения которых не применим программный комплекс Visual MINTEQ.

Шкала и критерии оценивания результатов обучения по дисциплине.

Результаты	«Неудовл	«Удовлетво-	обучения по дисцип «Хорошо»	«Отлично»
обучения	етво-	рительно»	1	
	рительно	1		
	»			
Знания:	Знания	Фрагментарные	Общие, но не	Систематически
законы равновесной	отсутству	знания	структурированн	е знания
термодинамики; основные	ют		ые знания	
методы и подходы,				
используемые для				
термодинамического				
моделирования природных				
процессов; особенности				
постановки задач и				
интерпретации результатов при				
моделировании				
низкотемпературных				
процессов; типичные задачи				
моделирования природно-				
техногенных систем.				
Умения:	Умения	В целом	В целом	Успешное
выполнение физико-	отсутству	успешное, но не	успешное, но	умение
химических расчетов состояния	ЮТ	систематическое	содержащее	использовать
природно-техногенных систем с		умение,	отдельные	возможности
помощью программных		допускает	пробелы умение	термодинамичес
комплексов HCh и Visual		неточности	использовать	кого
MINTEQ		непринципиальн	возможности	моделирования
		ого характера	программных	для решения
			комплексов.	геохимических
_				задач.
Владения:	Навыки	Фрагментарное	В целом	Владение
навыками подготовки задач в	владения	владение	сформированные	методами
программных комплексах HCh	отсутству	методикой,	навыки	моделирования
и Visual MINTEQ, проведения	ЮТ	наличие	использования	низкотемператур
расчетов, моделирующих		отдельных	программных	ных процессов в
протекание процессов,		навыков	комплексов, но	программных
характерных для природно-			имеется	комплексах HCh
техногенных систем.			определенная	и Visual
			неуверенность.	MINTEQ

8. Ресурсное обеспечение:

А) Перечень основной и дополнительной литературы.

- основная литература:

Методы геохимического моделирования и прогнозирования в гидрогеологии. // Под ред. С.Р.Крайнова. М., Недра, 1988, 254 с.

- дополнительная литература:

- Борисов М.В., Шваров Ю.В. Термодинамика геохимических процессов. М., МГУ, 1992, 254 с.
- Бортникова С.Б., Гаськова О.Л., Бессонова Е.П. Геохимия техногенных систем. // Новосибирск, Академическое изд-во "Гео", 2006, 169 с.
- Гричук Д.В. Термодинамические модели субмаринных гидротермальных систем. // М.: Научный мир, 2000, 304 с.
- Крайнов С.Р., Рыженко Б.Н., Швец В.М. Геохимия подземных вод. Теоретические прикладные и экологические аспекты. Изд. 2-е, доп. // М., РАН, 2012, 677 с.
- Наумов Г.Б., Рыженко Б.Н., Ходаковский И.Л. Справочник термодинамических величин. // М., Атомиздат, 1971, 239 с.
- Шваров Ю.В. Алгоритмизация численного равновесного моделирования динамических геохимических процессов. // Геохимия, 1999, № 6, 646-652.
- Шваров Ю.В. НСh: новые возможности термодинамического моделирования геохимических систем, предоставляемые Windows. // Геохимия, 2008, № 8, 898-903.
- Allison J.D., Brown D.S., Novo-Gradac K.J. 1991. MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3•0 Users' Manual. U.S. EPA, Athens, Georgia.
- Gustafson J.P. 2001. Modeling the Acid–Base Properties and Metal Complexation of Humic Substances with the Stockholm Humic Model. Journal of Colloid and Interface Science. 244, P. 102–112
- Gustafson J.P. 2004. Visual MINTEQ, Version 2•30: A Windows version of MINTEQA2, version 4•0
- Kinniburgh D.G., van Riemsdijk W.H., Koopal L.K., Borkovec M., Benedetti M.F., Avena M. J. 1999. Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces. Physicochemical and Engineering Aspects. 151. P.147–166
- Mantoura R.F.C., Dickson A., Riley S.P. 1978. The complexation of metals with humic materials in natural water // Estuar. Coast. Mar. Sci. Vol. 6. P. 383-408.
- May P.M. 2000. A Simple, General and Robust Function for Equilibria in Aqueous Electrolyte Solutions to High Ionic Strength and Temperature. Webmaster, Murdoch University, Australia.
- May P.M., Murray K. 2001. Database of Chemical Reactions Designed to Achieve Thermodynamic Consistency Automatically. Webmaster, Murdoch University, Australia.
- Nordstrom D.K. 2004. Modeling low-temperature geochemical processes. In Treatise on Geochemistry, vol. 5, Holland HD, Surface and Ground Water, Weathering, and Soils, Elsevier Pergamon: Amsterdam. P. 37–72.
- Powell K. J., Brown P. L., Byrne R. H., Gajda T., Hefter G., Sjöberg S. and Wanner H. 2007. Chemical speciation of environmentally significant metals with inorganic ligands. Part 2: The Cu²⁺ OH⁻, Cl⁻, CO₃²⁻, SO₄²⁻, and PO₄³⁻ systems (IUPAC Technical Report). Pure and Applied Chemistry. Vol. 79. N 5. P. 895–950.
- Powell K. J., Brown P. L., Byrne R. H., Gajda T., Hefter G., Leuz A.-K., Sjöberg S. and Wanner H. 2009. Chemical speciation of environmentally significant metals with inorganic ligands. Part 3: The Pb²⁺ + OH⁻, Cl⁻, CO₃²⁻, SO₄²⁻, and PO₄³⁻ systems (IUPAC Technical Report). Pure and Applied Chemistry. Vol. 81. N 12. P. 2425–2476.

- Powell K. J., Brown P. L., Byrne R. H., Gajda T., Hefter G., Leuz A.-K., Sjöberg S. and Wanner H. 2011. Chemical speciation of environmentally significant metals with inorganic ligands. Part 4: The Cd²⁺ + OH⁻, Cl⁻, CO₃²⁻, SO₄²⁻, and PO₄³⁻ systems (IUPAC Technical Report). Pure and Applied Chemistry. Vol. 83. N 5. P. 1163–1214.
- Powell K. J., Brown P. L., Byrne R. H., Gajda T., Hefter G., Leuz A.-K., Sjöberg S. and Wanner H. 2013. Chemical speciation of environmentally significant metals with inorganic ligands. Part 5: The Zn²⁺ + OH⁻, Cl⁻, CO₃²⁻, SO₄²⁻, and PO₄³⁻ systems (IUPAC Technical Report). Pure and Applied Chemistry. Vol. 85. N 12. P. 2249–2311.
- Schnitzer M., Scinner S.I.M. 1967. Organo-metallic interaction in soil: 7. Stability constants of Pb, Ni, Co, Ca, Mn and Mg-fulvic acid complexes // Soil Sci. Vol. 103. P. 247–252.
- Smith R. M. and Martell A. E. NIST Critically Selected Stability Constants of Metal Complexes Database. 2004.
- Shvarov Yu. A suite of programs, OptimA, OptimB, OptimC, and OptimS compatible with the Unitherm database, for deriving the thermodynamic properties of aqueous species from solubility, potentiometry and spectroscopy measurements. // Applied Geochemistry, 2015, vol. 55, 17-27.
- Turner D.R., Whitfield M., Dickson A.G. 1981. The equilibrium speciation of dissolved components in freshwater and seawater at 25°C and 1 atm pressure // Geochimica et Cosmochimica Acta. Vol. 45. N 6. P. 855-881.

- методические материалы:

- Инструкция пользователя пакета программ HCh. МГУ, 2009. http://www.geol.msu.ru/deps/geochems/soft/index.html
- MINTEQA2/PRODEFA2, A Geochemical Assessment Model for Environmental Systems: User Manual Supplement for Version 4.0 https://vminteq.lwr.kth.se/
- Б) Перечень лицензионного программного обеспечения пакеты программ: Microsoft Office Excel, Microsoft Office PowerPoint.
- Д) Материально-технического обеспечение: персональные компьютеры.
- 9. Язык преподавания русский.
- 10. Преподаватели Гричук Д.В., Липатникова О.А.
- 11. Авторы программы Гричук Д.В., Липатникова О.А.