
МЕТАМОРФИЧЕСКИЕ ГОРНЫЕ ПОРОДЫ

http://www1.newark.ohio-state.edu/Professional/OSU/Faculty/jstjohn/BIFs/BIFs.htm

Мы переходим к процессам, которые, за редким исключением, не сопровождаются плавлением и кристаллизацией расплавов, а происходят в твердом состоянии.

Литература по курсу «Петрография с кристаллооптикой» (метаморфизм)

1. Конспекты лекций и материалы практических занятий.

- 2. Маракушев А.А., Бобров А.В. Метаморфическая петрология. М.: Изд-во МГУ. 2005.
- 3. Петрография. Т. 3. Под ред. А.А.Маракушева. М.: МГУ. 1986.
- 4. Перчук А.Л., Сафонов О.Г., Сазонова Л.В., Тихомиров П.Л., Плечов П.Ю., Шур М.Ю. Основы петрологии магматических и метаморфических процессов. М.: ИД «КДУ». 2015.
- 5. Маракушев А.А., Бобров А.В., Перцев Н.Н., Феногенов А.Н. Основы кристаллооптики и породообразующие минералы. М.: Юрайт. 2016.
- 6. Шур М.Ю. Петрография. Руководство к практическим занятиям. М.: МГУ. 2005 (и более поздние издания).

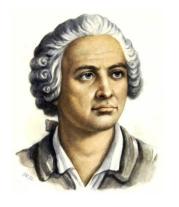

Консультация — чт (18-30—20-00, ауд. В1913-лев)

Лекция № 26

Определение, главные типы и факторы метаморфизма

Метаморфизм (от др.-греч. μετα-μορφόομαι — подвергаюсь превращению, преображаюсь) — преобразование осадочных, магматических и ранее метаморфизованных пород в твердом состоянии. Это преобразование происходит под воздействием температуры, давления и при участии летучих компонентов.

Ранее...



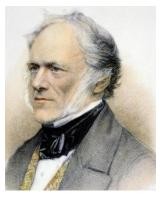
Мирмекиты

Хлорит по биотиту

Соссюрит по плагиоклазу

Немного истории

М.В. Ломоносов «О слоях земных» (1763):


Ил или глина превращаются в твердый камень в результате длительного слеживания и «подземного огненного действия» с последующим «проникновением вод минеральных».

англ. Джеймс Хаттон (James Hutton) «Теория Земли» (1775):

Горные породы изменяются под действием внутреннего тепла Земли.

A. Буе (1820): Термин «метаморфизм»

шотл. Чарльз Лайель (Charles Lyell) «Основы геологии» (1833):

Термин «метаморфические породы».

фр. **Эли де Бомон** (Elie de Baumont) **(1846):**

Метаморфизму подвергаются как осадочные, так и магматические породы.

Главные типы метаморфизма

🗖 эндогенный

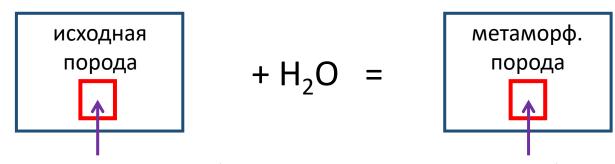
Связан с энергией, возникающей в недрах Земли.

🛘 космогенный

Результат ударного процесса, приводит к образованию *импактитов*.

🗖 региональный

Охватывает значительную территорию и вызывает сильные изменения в структуре пород и их минеральном составе. Температура и давление играют *одинаково важную роль*.


🗖 локальный

Охватывает сравнительно небольшие площади. Развитие процесса обычно контролируется только одним фактором — температурой или давлением. Например, контактовый метаморфизм (температура), дислокационный метаморфизм (давление).

Факторы метаморфизма

Метаморфизм происходит под воздействием на исходные породы физико-химических факторов — температуры и давления, с участием летучих компонентов (флюидов).

Общий вид метаморфической реакции:

фактор метаморфизма, определяющий физико-химический эффект метаморфической реакции

Рассмотрим влияние основных физико-химических факторов на ход метаморфического процесса.

Температура

Определяет **тепловой эффект** метаморфической реакции (изменение *энтальпии* в ходе метаморфизма):

исходная порода *Н*₁

$$+ H_2O =$$

метаморф. порода *Н*2

$$\Delta H = H_2 - H_1$$

- \square Если $\Delta H > 0$, то процесс является *эндотермическим*, т.е. на его протекание затрачивается тепло.
- \square Если $\Delta H < 0$, то процесс является *экзотермическим*, т.е. в ходе его происходит выделение тепла.

Типы метаморфизма, связанные с изменением температуры

□ прогрессивный

Происходит с повышением температуры ($\Delta H > 0$).

□ регрессивный

Происходит с понижением температуры ($\Delta H < 0$).

Но не все так просто...

Амфиболит (Pl + Hbl).

Относится к ряду метабазитов и может образоваться в результате метаморфизма

- □ базальтов или габбро (регрессивный процесс);
- □ глинисто-карбонатных осадочных пород (прогрессивный процесс).

Вывод: для определения характера метаморфизма нужно знать исходную породу!

Типы метаморфизма, связанные с изменением температуры

Бывают и более сложные случаи.

Полиметаморфизм – многоэтапное преобразование горных пород, вызванное наложением процессов метаморфизма (прогрессивного или регрессивного) на уже метаморфизованные породы.

Диафторез (от греч. *diaphthéiro* – разрушаю), **повторный метаморфизм** горных пород, при котором горные породы, образовавшиеся в условиях глубинного высокотемпературного метаморфизма, подвергаются затем низкотемпературному метаморфизму и превращаются в породы низких ступеней метаморфизма (филлиты, зелёные сланцы и др.), сохраняющие следы бывшего более глубокого метаморфизма.

Литостатическое давление

Литостатическим называется всестороннее давление, задаваемое весом вышележащих толщ. Определяет глубину протекания и объемный эффект метаморфической реакции (изменение *объема* в ходе метаморфизма):

$$+ H_2O =$$

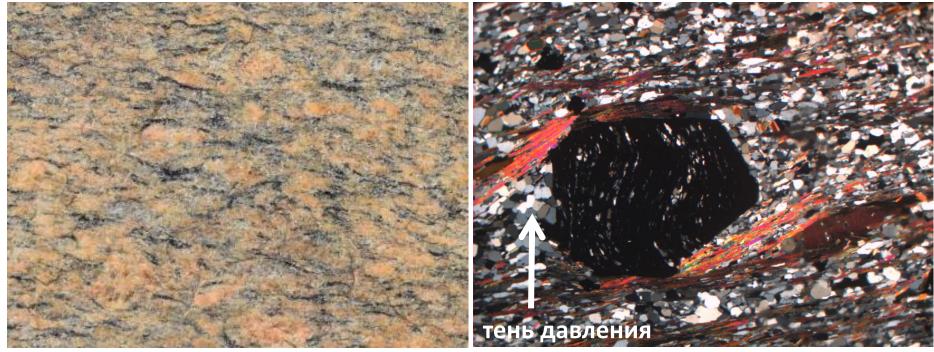
метаморф. порода **V**2

$$\Delta V = V_2 - V_1$$

- \square Если $\Delta V > 0$, то процесс протекает с понижением давления.
- \square Если $\Delta V < 0$, то процесс происходит с увеличением давления.

Давление при метаморфизме

- \square **Литостатическое давление** ($P_{\rm s}$) главная составляющая давления в большинстве метаморфических процессах, происходящих на глубине.
- **Флюидное давление** ($P_{\phi \Lambda}$) определяется участием флюидной фазы в метаморфическом процессе и имеет особое значение в реакциях с участием летучих соединений (H_2O , CO_2 и др.).
- □ Стрессовое давление имеет направленный характер и не является фактором метаморфизма, так как не его воздействие не приводит к фазовым превращениям (метаморфическим реакциям).



В аппарате всестороннего давления Рь испытает серию полиморфных превращений. В частности, при 400 ГПа он становится в 250 раз прочнее своего низкобарного полиморфа и в 10 раз прочнее стали.

Роль стрессового давления

- **Ф**ормирование ориентированных текстур (минералы вытягиваются перпендикулярно стрессу).
- □ Улучшение проницаемости породы флюидными компонентами ⇒ метаморфическая дифференциация.

Биотитовый гнейс, Чашковские горы, Ю. Урал

Гранат-слюдяной сланец, Salangen, Норвегия

Флюидное давление

Флюидное давление определяется участием летучих компонентов в метаморфической реакции, и ее протекание может быть представлено следующей реакцией:

$$\Delta m(\mathbf{H}_2\mathbf{O}) = \Delta m(\mathbf{H}_2\mathbf{O})_1 - \Delta m(\mathbf{H}_2\mathbf{O})_2$$

- \square Если $\Delta m(H_2O) > 0$, то метаморфизм связан с гидратацией, т.е. образованием водосодержащих минералов.
- \square Если $\Delta m(H_2O) < 0$, то происходит дегидратация, т.е. разложение водосодержащих минералов.

Флюидное давление

Флюидное давление определяется участием летучих компонентов в метаморфической реакции, и ее протекание может быть представлено следующей реакцией:

$$\Delta m(H_2O) = \Delta m(H_2O)_1 - \Delta m(H_2O)_2$$

Количественная оценка влияния летучих компонентов на метаморфическую реакцию часто производится с помощью его **химического потенциала** $\mu(H_2O)$ (в зарубежной литературе – **активности** $a(H_2O)$):

$$\mu(H_2O) = RT \ln p(H_2O).$$

Флюидное vs. литостатическое давление

Всегда $P_s \ge P_{\phi_{\Lambda}} > p(H_2O), p(CO_2)...$

- \square Если $P_{\rm s} > P_{\rm \phi a}$, то происходит фильтрация флюидов с глубины. Часто они осуществляют транспортировку петрогенных элементов \Rightarrow состав породы меняется.
- \square Если $P_{\rm s} \approx P_{\rm \phi a}$, то движение флюидов с глубины останавливается \Longrightarrow состав породы сохраняется.

изохимический

Состав породы при метаморфизме **не изменяется.** Допускается миграция флюидных компонентов, а при высоких температурах (>700°C) — щелочей.

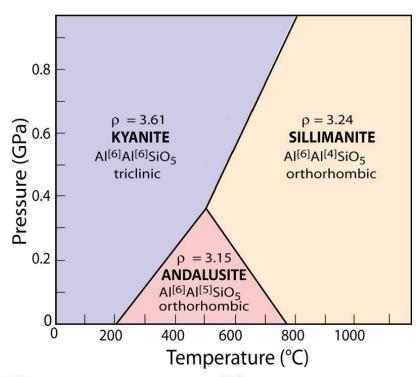
аллохимический

Происходит изменение состава породы.

Метасоматоз – крайнее проявление аллохимического метаморфизма, при котором снимаются практически все ограничения на изменение состава пород.

Взаимоотношение факторов метаморфизма

1. Давление vs. Температура


Связь между ними определяется уравнением Клаузиуса-Клапейрона:

$$\frac{dP}{dT} = \frac{\Delta H}{T\Delta V}$$

Пример – полиморфные модификации Al_2SiO_5 *(андалузит, силлиманит, кианит).*

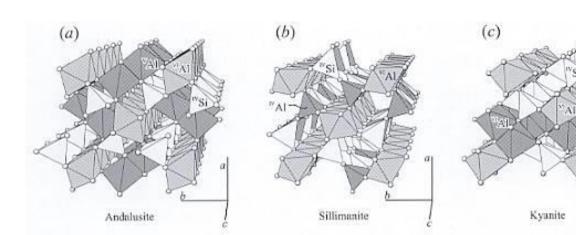
Каждый из этих минералов занимает свое поле на *P-T* **диаграмме** и однозначно характеризует **условия метаморфизма.**

Андалузит, силлиманит, кианит

Al₂SiO₅:

Кианит (наиболее плотный минерал) образуется при самом высоком давлении, а силлиманит — наиболее высокотемпературная фаза.

КЧ (окружение) Al: Ky – 6; Sil – 6+4; And – 5+4.

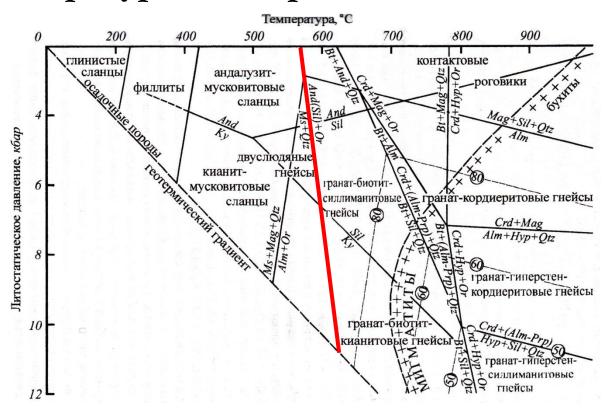

Андалузит, силлиманит, кианит

Кристаллохимическое правило:

С возрастанием давления (увеличением глубины) происходит увеличение координационных чисел химических элементов.

Al₂SiO₅:

Кианит (наиболее плотный минерал) образуется при самом высоком давлении, а силлиманит — наиболее высокотемпературная фаза.

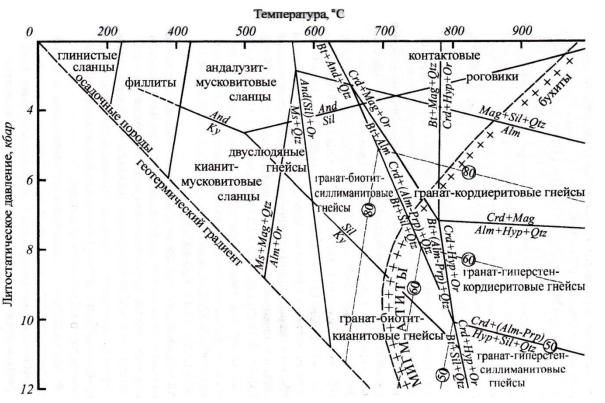


КЧ (окружение) Al: Ky – 6; Sil – 6+4;

And -5+4.

Взаимоотношение факторов метаморфизма

2. Температура vs. Парциальное давление летучих



Одна из ключевых реакций для метапелитов (600°C) $Ms + Qtz = And(Sil) + Or + H_2O$.

Температура и парциальное давление летучих - противоположно действующие факторы.

Взаимоотношение факторов метаморфизма

3. Литостатическое давление vs. Парциальное давление летучих

С глубиной стабильность водных минералов должна расширяться в область более высоких температур.

Но, на самом деле, это не так...

Метаморфические преобразования на глубине происходят **при умеренном значении флюидного давления,** поэтому линии реакций с участием летучих идут **почти вертикально.**