Лекция № 27

Схемы минеральных фаций метаморфических пород

Главными факторами метаморфизма являются **литостатическое давление, температура** и **участие флюидных компонентов.** Температура и давление при метаморфизме изменяются в широком диапазоне значений. В связи с этим, главной задачей в изучении метаморфических пород является **установление термодинамических** (*P-T*) условий их **образования.** Система *минеральных фаций* – результат работы многих ученых.

Геотермический градиент

Геотермический градиент характеризует закономерное увеличение температуры в определенных участках земной коры и мантии Земли с глубиной *по нормали* к ее поверхности и выражается в °C на 1 км). Изменение температуры вдоль какой-либо геологической поверхности называется **геотермой.**

Геотермический градиент крайне неоднороден в различных участках литосферы:

- □ среднее значение 30 °С/км (континентальные рифты);
- □ зоны субдукции **5–10 °С/км**;
- \square платформы 20 °С/км;
- \square рифтовые зоны и островные дуги -50 °C/км;
- □ малоглубинные зоны контактового метаморфизма **150— 200°C/км.**

Кольская сверхглубокая скважина

Проектная глубина была 15 км. При планировании рассматривался геотермический градиент 10 °C/км, т. е. на

глубине ожидалась температура 150 °C.

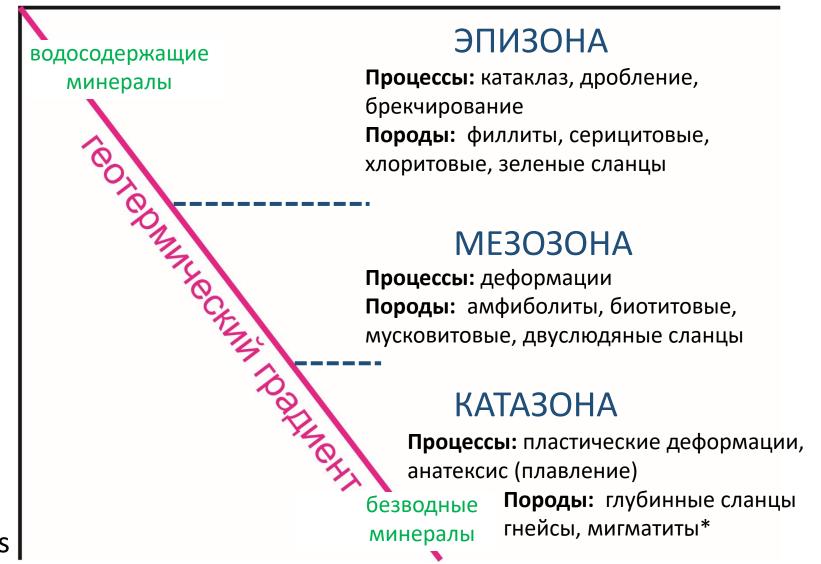
Так и было до глубины 3 км...

Однако дальше:

- $7 \text{ KM} 120 \,^{\circ}\text{C}$;
- 10 км − 180 °C;
- 12 км − 220 °C;
- 15 км более 280 °С (ожидание).

Геотермический градиент непостоянен и определяется составом горных пород, их физическим состоянием и теплопроводностью, плотностью теплового потока, близостью к магматическим образованиям и другими факторами.

https://geol.msu.ru/


Концепция глубинных зон метаморфизма

Возникла на рубеже XIX и XX веков на основе предположения о преобразовании пород при опускании их на ту или иную глубину в земной коре и прогреве под влиянием глубинного тепла.

Роль глубинного тепла в преобразовании пород возрастала с глубиной в соответствии с геотермическим градиентом Земли.

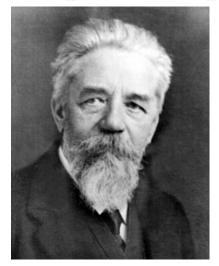
Главный постулат: **температура** и **давление** – **взаимозависимые параметры метаморфизма.**

Основоположники концепции глубинных зон – Ван-Хайз (Vane-Hise, 1904) и У. Грубенман (Grubenmann, 1904).

^{*} Мигматит (Седерхольм) – порода, состоящая из гнейсового субстрата, измененного под действием своеобразного флюида (ихора), и тонко пронизывающего его инъекционного материала гранитного состава.

Развитие концепции глубинных зон

швейц. Пауль Ниггли – разработка **термодинамическиой модели** концепции глубинных зон (1924).


статус научной теории

И.Д. Лукашевич – развитие **учения о круговороте и цикличности пород** (1909):

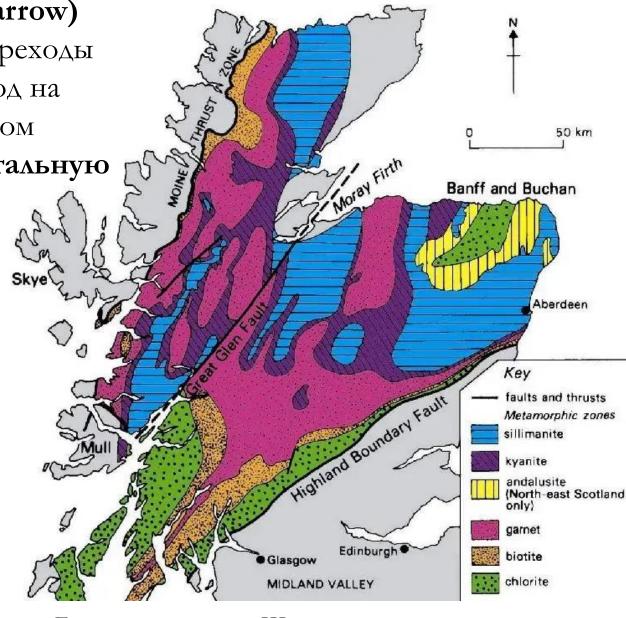
магма — изверженная порода — выветрелая порода — осадочная пород — слабо метаморфизованная порода — глубоко метаморфизованная порода — мигматит — магма...

Согласно этому учению, метаморфические преобразования всегда направлены в одну и ту же сторону — от низшей ступени метаморфизма к высшей (например, глина — глинистый сланец — слюдяной сланец — гнейс…).

Противоречия концепции глубинных зон

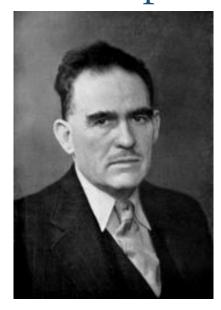
австр. **Фридрих** Иоганн Карл **Бекке** – не только знаменитая полоска!

- □ Открыл явление диафтореза (1909)
- Горные породы могут содержать в себе минералы разных зон метаморфизма
- Преобразования пород не обязательно направлены от низших ступеней к высшим, есть и обратные соотношения
- □ Наметил объемные эффекты метаморфических реакций, показав, что, в общем случае, давление на зависит от температуры (1898)


□ шотл. Г. Барроу (Barrow)
установил взаимные переходы
метаморфических пород на
сравнительно небольшом
расстоянии – горизонтальную

метаморфическую зональность

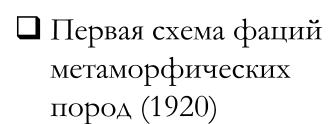
$\mathbf{HO3} \rightarrow \mathbf{CB}$:

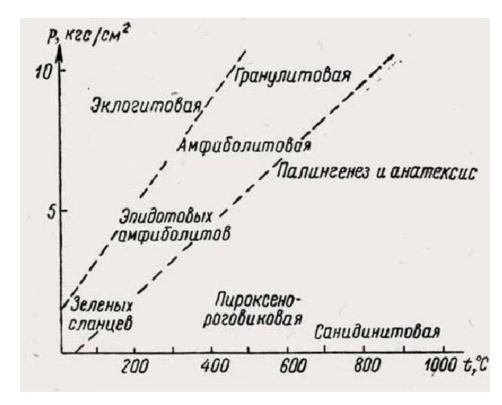

- хлорит
- биотит
- гранат
- **КИАНИТ**
- силлиманит

Барровианская зональность

Грампианские горы, Шотландское нагорье

Физико-химический анализ парагенезисов минералов


норв. Виктор Мориц Гольдшмидт (Goldschmidt)


- □Впервые применил правило фаз Гиббса к природным парагенезисам, что позволило определить условия образования пород;
- ■Изучил зональные роговиковые ореолы в районе Осло и показал, что эти породы образовались при высокой температуре и низком давлении;
- □Положил начало концепции минеральных фаций, которая была развита в трудах П. Эскола.

Концепция минеральных фаций

фин. Пентти Еелис Эскола (Eskola)

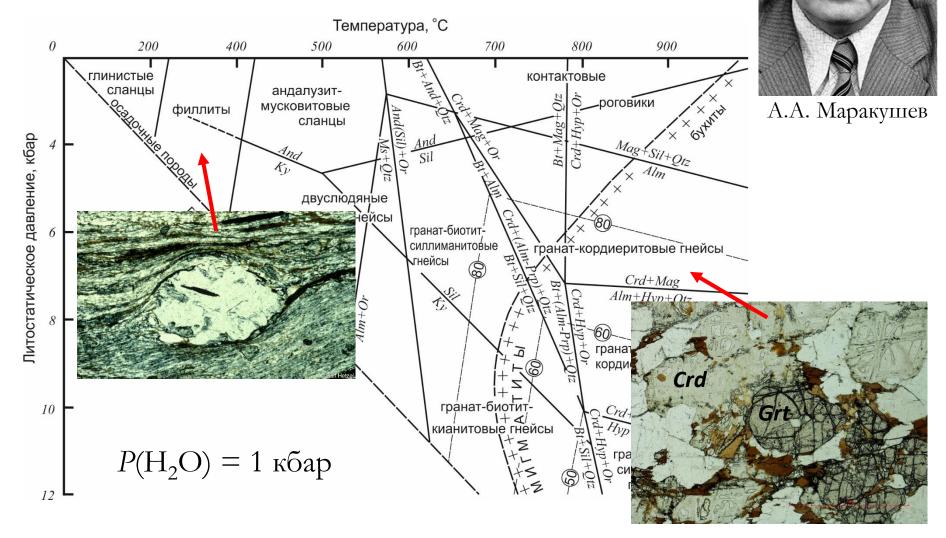
Минеральная фация метаморфизма — это совокупность метаморфических пород разного *химического* и *минерального* состава, образовавшихся в одинаковых интервалах температуры (T), давления (P) и при определенном количестве и составе флюидной фазы.

Проблемы минеральных фаций

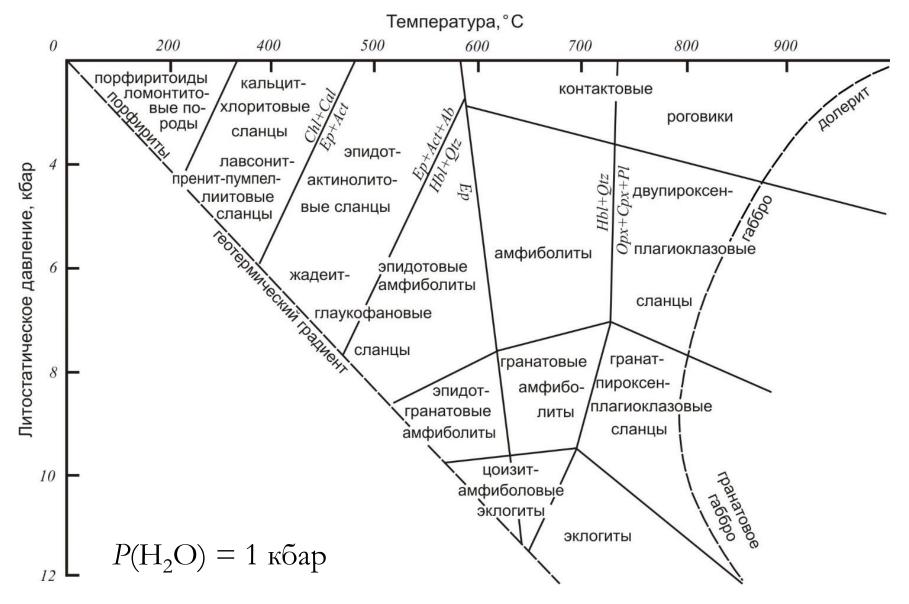
Проблема цеолитовой фации

Некоторые минеральные фации довольно значительно перекрываются с соседними на P—T диаграммах.

Необходим учет состава и содержания летучих компонентов


- Оценка вклада флюидного давления в общее давление при метаморфизме (Добрецов и др., 1969)
- гранулитовая фация $p(H_2O) = (0,2-0,4)P;$
- амфиболитовая фация $-p(H_2O) = (0,5-0,6)P;$
- зеленосланцевая фация $-p(H_2O) = (0,6-0,8)P;$
- цеолитовая фация $-p(H_2O) = (0,8-0,9)P$.

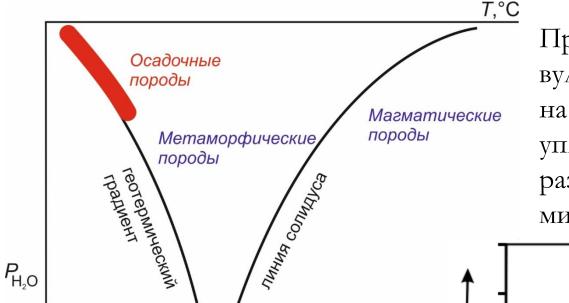
Проблемы минеральных фаций


- Несоответствие результатов экспериментальных исследований природным данным:
 - водосодержащие минералы;
 - Mg-Fe минералы и другие измоморфные серии.

Современные схемы минеральных фаций метаморфических пород строятся как Р – Т диаграммы с определенными (заданными) значениями содержания (парциального давления, активности) летучих компонентов.


Схема минеральных фаций метаморфических пород (метапелитов)

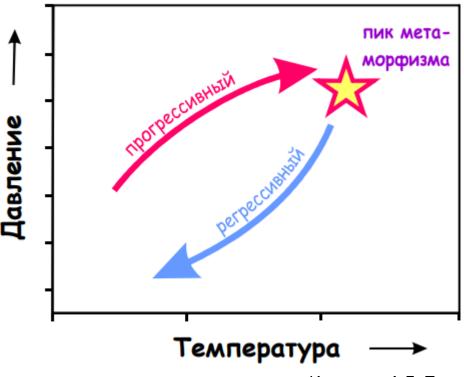
Схема минеральных фаций метабазитов



Международная схема минеральных фаций

Нет разделения по петрохимическим типам пород.

Диагенез vs. метаморфизм vs. магматизм



При погружении осадочных и вулканогенно-осадочных толщ на глубину они подвергаются уплотнению и изменениям с развитием в них новых минералов (диагенез).

Метаморфизм – эндогенное явление, связанное с участием **глубинных флюидов**.

Минимальная температура ~100–200 °C.

Максимальная температура более 1000 °C (плавление).

Из лекции А.Л. Перчука

Ступени метаморфизма

Породы низшей ступени метаморфизма (низкоградный метаморфизм) образуются при P—T условиях цеолитовой, пренит-пумпеллиитовой и фации зеленых сланцев. Для пород этих фаций характерно наличие водосодержащих слоистых силикатов в качестве типоморфных минералов, сланцеватая текстура и относительно малая прочность.

Метаморфизму средней ступени отвечают породы амфиболитовой фации. Здесь на смену слоистым силикатам приходят ленточные (амфибол), может появляться гнейсовидность и процессы частичного плавления (анатексиса).

Высшей ступени метаморфизма соответствуют породы гранулитовой фации. Типоморфные минералы гранулитов в основном безводные, текстуры пород гнейсовидные или массивные, широко проявлены явления анатексиса.

В целом, повышение ступени метаморфизма сопряжено с увеличением прочности пород, среднего размера зерен, доли каркасных силикатов, появлением гнейсовидности и исчезновением водосодержащих минералов.

Источники информации о степени метаморфизма

□ Минералы и минеральные ассоциации

Например, для высшей ступени (более 700°С) характерны пироксены, гранат, кордиерит, силлиманит и др.), для средней (500–700°С) — амфиболы, биотит, гранат и др., а для низшей (менее 500°С) — хлорит, мусковит и другие низкотемпературные водосодержащие минералы.

□ Составы минералов

Например, с ростом температуры биотит становится более магнезиальным, а для граната и кордиерита магнезиальность возрастает с давлением.

□ Структуры пород.

Важно! Все три характеристики нужно рассматривать в комплексе.