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A B S T R A C T

A method using simple inversion of refraction traveltimes for the determination of

2D velocity and interface structure is presented. The method is applicable to data

obtained from engineering seismics and from deep seismic investigations. The

advantage of simple inversion, as opposed to ray-tracing methods, is that it enables

direct calculation of a 2D velocity distribution, including information about

interfaces, thus eliminating the calculation of seismic rays at every step of the

iteration process. The inversion method is based on a local approximation of the real

velocity cross-section by homogeneous functions of two coordinates. Homogeneous

functions are very useful for the approximation of real geological media.

Homogeneous velocity functions can include straight-line seismic boundaries. The

contour lines of homogeneous functions are arbitrary curves that are similar to one

another. The traveltime curves recorded at the surface of media with homogeneous

velocity functions are also similar to one another. This is true for both refraction and

reflection traveltime curves. For two reverse traveltime curves, non-linear

transformations exist which continuously convert the direct traveltime curve to the

reverse one and vice versa. This fact has enabled us to develop an automatic

procedure for the identification of waves refracted at different seismic boundaries

using reverse traveltime curves. Homogeneous functions of two coordinates can

describe media where the velocity depends significantly on two coordinates.

However, the rays and the traveltime fields corresponding to these velocity functions

can be transformed to those for media where the velocity depends on one coordinate.

The 2D inverse kinematic problem, i.e. the computation of an approximate

homogeneous velocity function using the data from two reverse traveltime curves

of the refracted first arrival, is thus resolved. Since the solution algorithm is stable, in

the case of complex shooting geometry, the common-velocity cross-section can be

constructed by applying a local approximation. This method enables the

reconstruction of practically any arbitrary velocity function of two coordinates.

The computer program, known as godograf, which is based on this theory, is a

universal program for the interpretation of any system of refraction traveltime curves

for any refraction method for both shallow and deep seismic studies of crust and mantle.

Examples using synthetic data demonstrate the accuracy of the algorithm and its

sensitivity to realistic noise levels. Inversions of the refraction traveltimes from the

Salair ore deposit, the Moscow region and the Kamchatka volcano seismic profiles

illustrate the methodology, practical considerations and capability of seismic imaging

with the inversion method.
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I N T R O D U C T I O N

Until 1960, the main methods used for investigating the

crystalline basement and deep structures of the earth were

those using refracted waves and at that time a huge amount

of refraction data had been gathered from such seismic

exploration. In particular, the territory of the former Soviet

Union had been covered by a network of profiles of different

characteristics. Refracted waves were used for investigating

the oil basins in West Siberia, South Turkmenia, Bashkiria

and other regions.

However, after 1960, the common-depth-point reflection

method replaced refracted wave methods in seismic explora-

tion and at the same time new interpretative methods based

on a 2D model for refracted waves were investigated.

Currently, the above methods ± plus±minus and others ±

have been replaced by the following two methods: 2D

modelling (ray tracing) and tomography using curved rays. At

Moscow State University, a 2D method of inversion of

refraction traveltime curves, i.e. the homogeneous function

method, was proposed and was first used in the 1980s. The

method is based on a local approximation of the real velocity

distribution by homogeneous functions of two coordinates.

Homogeneous functions are infinite-dimensional functions.

In polar coordinates they are described by the product of two

functions: a power function of any degree of the radius and

an arbitrary function of the polar angle. Thus an infinite

number of coefficients describe the homogeneous function in

the case of a Taylor series. Ray-tracing methods are also

based on local approximations of the real velocity distribu-

tion (CÏ ervenyÂ, Molotkov and PsÏencÏõÂk 1977). For the local

approximation, different functions can be used, e.g. a

piecewise constant function (Ganzha 1982), a bilinear

function (Boldyrev, Kaz and Ponomarev 1982) and quadratic

fractional functions (Zelt and Smith 1992). For example, the

dimension of velocity function used by Zelt and Smith (1992)

is 7.

Ray-tracing and tomography methods as well as general-

ized linear inversion methods require an initial model and, in

addition, the final velocity cross-section often depends on the

initial model chosen. The construction of this initial model is

time-consuming.

Inversion using homogeneous functions does not require an

initial model and in addition the preliminary distinguishing

and identification of waves on traveltime curves from

different interfaces is unnecessary. It is performed automati-

cally.

Tomography methods require a very detailed observation

system, i.e. many shot and receiver locations, because the

number of gridpoints where velocity values are calculated

depends directly on the number of observations. In contrast

to seismic experiments, which consist of numerous shots

along a profile, it may be impossible through trial-and-error

modelling to construct a model that fits the data within

acceptable limits. The inversion method using the homo-

geneous function approximation is applicable to any set of

traveltime curves, from the minimal case of two reverse

traveltime curves to cases where the receivers and sources are

equally spaced along the profile.

Homogeneous functions are not arbitrary functions of two

coordinates. However, they are very suitable for the

approximation of real geological media because they

correspond to the properties of real seismic media. We

know that the values of the horizontal components of real

velocity gradients are much smaller than the values of the

vertical component. The structure of homogeneous functions

corresponds to this. Homogeneous functions in the radial

direction change as a power function (i.e. a smooth function)

but in the subvertical direction (depending on the polar angle)

they can change arbitrarily and can have discontinuities

(seismic boundaries).

The inversion method works well for the 2D case. For a

homogeneous function of three coordinates, however, the

solution of the inverse problem will require comprehensive

analysis.

In its present form the inversion method does not include

the use of full waveforms (i.e. traveltimes only), wide-angle

reflection traveltimes and amplitudes of waves; however,

these may be accommodated in the future.

Linear inversion and tomography methods using ray

tracing are unstable and need a preliminary smoothing of

boundaries. In contrast, the inversion algorithm using

homogeneous functions is stable. This has been proved

theoretically (Piip and Efimova 1987) and practically.

Special methods and tests to estimate the correlation of the

level of detail or spatial resolution of a final cross-section to

the geometry of given traveltime curves are used in ray-

tracing and tomography methods. The spatial resolution of

cross-sections calculated by the method using homogeneous

functions corresponds to the data set in all cases. Using the

inversion method with two reverse traveltime curves, we can

obtain, in cross-section only, linear seismic boundaries and

monotonic velocity functions in layers. The more detailed the

data system, the more detailed the resulting cross-section can

be.

Investigations show that the final velocity models obtained
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by the inversion method fit the observed times sufficiently

well. The inversion process using the homogeneous function

method requires less time and demands considerably less

effort than other methods.

P R O P E RT I E S O F H O M O G E N E O U S

F U N C T I O N S

The inversion method is based on the local approximation of

a real velocity cross-section by homogeneous functions of two

coordinates (Piip 1978, 1982a,b, 1991). Homogeneous

functions are a very wide class of infinite-dimensional

functions, which are very useful for approximating real

geological media. In polar coordinates, homogeneous func-

tions are described by the product of two functions of a single

coordinate ± a power function of the radial coordinate and

an arbitrary function of the polar angle:

v � rmc�w�; �1�
where m, the degree of the homogeneous function, is real. As

c (w) is an arbitrary function, the seismic model described by

the homogeneous function can include straight-line seismic

boundaries (lines of discontinuity of function) and wave-

guides (layers) where velocity values decrease with depth.

Contour lines of homogeneous functions are arbitrary but

similar curves. This enables us to approximate layered

geological media by homogeneous functions sufficiently well.

We use the term `similarity' in the following sense. Similar

phenomena (physical fields, geometrical figures) are those for

which a linear transformation of variables describing them

produces coincident results.

This model was chosen because it affords the possibility of

producing similar traveltime curves from sources situated at

neighbouring points along a profile. For media that are

homogeneous in the horizontal direction, the traveltime

curves obtained from sources at different points on a profile

are identical, but when widely different traveltime curves are

obtained from neighbouring points on a profile, we must

assume that there is a geological block boundary between

these points. These are the two extreme cases. Usually the

traveltime curves from neighbouring sources along a profile

resemble one another, i.e. they have similar features, and the

properties of the layered cross-sections in the horizontal

direction change smoothly. Similarity may involve identity as

a special case.

The ability of homogeneous velocity functions to give an

approximate description of the character of geological media

is illustrated below. The possible forms of the velocity fields

described by a homogeneous function in two coordinates are

shown in Fig. 1. The contours of the velocity fields of

function (1) are as follows: m � 0 in the first column; m . 0

in the second column; m , 0 in the third column; the fourth

column shows the corresponding graphs of the functions

c (w ). It can be seen that the main interpretative model, i.e. a

two-layer model with constant velocities, is a special case of a

homogeneous function class. A 1D inhomogeneous model

can be obtained from (1) as a limiting case, as is shown

below.

We define the domain of homogeneous functions by

0 , r , rk, 0 # w , p /2, because at the point r � 0,

w � 0, the velocity takes the non-physical value of zero.

The problem of selecting the position of the origin is

discussed below.

In order to illustrate the properties of the homogeneous

functions and to show that a 1D inhomogeneous model is the

limiting case of some homogeneous function, we consider

the following. We compare the homogeneous function

Figure 1 Possible forms of velocity fields and plots of c(f ) for

homogeneous functions. The function c(f) is an arbitrary function

of the polar angle and may have discontinuities. Consequently

velocity fields may contain linear seismic boundaries.
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v(r,w )�rmc (w ) and the function v1(x,z)�xmf (z), where x

and z are Cartesian coordinates and f (z) is an arbitrary

function of depth. We now use the Cartesian coordinates to

represent the homogeneous function,

v�x; z� � �
�����������������
x2 1 z2
p

�m�arctan�z=x��:
We consider the homogeneous function in the following

domain: x0 # x # xk, 0 # z # zk, where x .. z, x .. Dx,

with Dx � xk ±x0.

Under these conditions we obtain

v < xmc�z/x�:
As variations in the value of x are relatively small inside this

limited domain, we can write

xk� x0�1 1Dx/x0� < x0; soc�z/x� < g�z� or v < xmg�z�:
Thus inside the chosen domain the two velocity functions

have a close resemblance. If we substitute m � 0, then

obviously within the domain the homogeneous function is

effectively a function of depth, i.e. v(x,z) < g(z). Thus a 1D

inhomogeneous model is the limiting case of a zero-degree

homogeneous function. As we never use a velocity function in

a whole, infinite half-plane, the assumptions do not limit the

generality of this conclusion. Thus a simple horizontally

layered medium with constant velocities V1, V2, V3, ¼ and

interfaces Z1, Z2, Z3, ¼ can be approximated by a zero-

degree homogeneous function as closely as desired, although

the arbitrary function of depth is not a homogeneous

function.

We note that the class of homogeneous functions is wider

than the class of functions xmf (z), because the homogeneous

functions can describe seismic media with boundaries of

arbitrary inclination including those that are effectively

horizontal, but the functions xmf (z) can describe only

media with horizontal boundaries.

Thus homogeneous functions can describe layered media

with linear seismic boundaries, waveguides and folded zones.

Using homogeneous functions for a local approximation, we

can describe an arbitrary velocity distribution.

P R O P E RT I E S O F T R AV E LT I M E C U RV E S

F O R M E D I A W H E R E V E L O C I T Y I S A

H O M O G E N E O U S F U N C T I O N

The following important properties of traveltime curves are

used for solving the inverse problem. The traveltime curves

(of direct, head, diving and reflected waves and also the first

arrivals of the waves) obtained from different sources at the

surface of a medium with a homogeneous velocity function

are similar to each other. All the equations below hold for any

two traveltime curves of the same type.

We use polar coordinates to describe the traveltime curves.

1 For any two traveltime curves t1(r1) and t2(r2) of the same

type with sources at the points r01 and r02 on the surface

w � 0 of medium 1, we can write

r1

r2
� r01

r02
) t1

t2
� r01

r02

� �12m

; �2�

where m is the degree of the homogeneous function (1). With

knowledge of any one traveltime curve from a source on the

surface of medium 1, the traveltime curve from a source at

any other point on the surface of medium 1 can be calculated

using a linear transformation.

2 For two reverse traveltime curves t1(r1) and t2(r2) in the

interval [r01,r02] on the surface w � 0 of medium 1, with

sources at the points r01 and r02, we can write

r1´r2 � r01´r02 ) t1

t2

� �
� r02

r1

� �12m

: �3�

This transformation maps a forward traveltime curve on to

an inverse one and vice versa.

Function (1) can include velocity discontinuities and

intervals where there is a minimum. Accordingly, seismic

media with velocity 1 can contain boundaries and wave-

guides. Traveltime curves at the surface of media 1, can, in

turn, be multivalued and include shadow zones. Traveltime

curves of head and reflected waves can also be present. All

these singularities agree with the results of transformations

(2) and (3). Thus we can identify automatically waves from

different layers on the reverse traveltime curves of first

arrivals. This is a common problem, which is difficult to

solve.

Furthermore, traveltime curves for medium 1 possess

important properties. The media under investigation are

two-dimensionally inhomogeneous. There is no limit on the

horizontal component of the velocity gradient. However,

traveltime curves for medium 1 can be converted to

traveltime curves corresponding to a 1D medium whose

velocity depends only on the polar angle. Let t(r) be a

traveltime curve with source at the point r0 on the surface of

medium 1. Then the transformations,

r � r12m;

r0 � r12m
0 ; �4�

t � j1 2 mjt;
will convert t(r) to traveltime curve t (r ) with source at r0 for
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a medium with velocity j � j (a ), where

a � j1 2 mjw;
j � c:

�5�

More details are given in the Appendix.

Transformation (4) enables us to convert forward and

inverse problems for medium 1 into 1D cases. This property

is used for solving the inverse problem.

I N V E R S E P R O B L E M

The homogeneous velocity function (1) can be calculated

using two reverse traveltime curves of first arrivals. Let the

Cartesian coordinates (x,z) define a point in some 2D

medium and let t1(x1) and t2(x2) be two reverse traveltime

curves at the surface z � 0 of the medium. The coordinates of

the sources are x01 and x02 and points on the traveltime

curves are defined in the interval [x01,x02]. We search for a

best approximation of the unknown velocity distribution in

the medium by a homogeneous function in two coordinates.

We assume that the origin of the local polar coordinates is at

the point x � c on the surface z � 0, where c can be either to

the right or to the left of the interval [x01,x02]. Then the radial

coordinates of points on the profile are r � | x 1 c | and the

unknown velocity function, in Cartesian coordinates, has the

form,

v �
������������������������������
�x 1 c�2 1 z2

q� �m

c arctan
z

jx 1 cj
� �� �

; �6�

where m, c and the values of the function c are unknown

parameters. Initially, arbitrary values are assigned to the

parameters m and c. Equation (3), which in Cartesian

coordinates can be written in the form,

x2 � �x01 1 c��x02 1 c�
x1 1 c

2 c;

t2 � �x02 1 c�
�x1 1 c�

� �1 2 m

t1;

�7�

is then used to convert the given inverse traveltime curve

t2(x2) into a forward one. The traveltime curve ts
1(x1) thus

obtained may differ from the given forward traveltime curve

t1(x1). The mean square deviation between the given forward

traveltime curve t1(x1) and the transformed traveltime curve

ts
1(x1) is a function of the two variables m and c: f (m,c). Let

the coordinates of the minimum point of f (m,c) be m* and

c*, so that

f �m*; c*� � min f �m; c� � f *:

These parameters m* and c* give the homogeneous function

that is the best approximation of the real velocity distribu-

tion. The value of f at the minimum point is f * and it defines

the error of the approximation. The function f (m,c) is

minimized using standard algorithms for minimizing a

function of several variables. We note that at each step in

the evaluation of f (m,c) we do not calculate seismic rays as is

done in ray-tracing algorithms, but instead we perform

simple transformations of a reverse traveltime curve into a

forward traveltime curve. Since homogeneous functions are

infinite-dimensional functions, they provide good approxi-

mations, with errors that are always close to the time

uncertainties for a given experiment, as numerous tests and

investigations have shown.

Knowing the location of the polar origin (parameter c), we

can now use polar coordinates. The reverse traveltime curve

t2(r2) can be transformed into the forward traveltime curve

ts
1(r1) using (3) and m* and c*. The deviation between t1(r1)

and ts
1(r1) is now a minimum. Next we calculate the average

traveltime curve,

�t(r1) � 1=2(t1(r1) 1 ts
1(r1)):

We assume that the traveltime curves tÅ(r1) with source at the

point r01 correspond exactly to the required homogeneous

function with parameters m* and c*. It is now necessary to

find values of the function c (w ) from (6). We use the property

of traveltime curves, discussed above, that enables conversion

of the traveltime curves into those for 1D media. Applying

transformation (4) to tÅ(r1), we obtain the traveltime curve

t (r ) with source r01 corresponding to an unknown velocity

j � j(a ). The function j � j (a ) can include breakpoints

and intervals where it has minimum values. In order to obtain

velocity boundaries in the cross-section, we represent the

function j � j (a ) as a step function,

{j � ji � const; ai # a # ai 1 1}i� n
i� 0;

for {ji 1 1 . ji }n
i�0; �8�

where n is the number of points of interpolation on the

traveltime curve t(r ) (we use n � 90). In media with velocity

given by (8) head waves exist and the traveltime curve of the

first arrivals consists of linear intervals. We now represent

t (r ) as a broken line with n intervals. It is necessary to

calculate j i and Da i � a i11 2 a i from the traveltime curve

t (r ). This problem is solved using a known formula for head-

wave kinematics (see Appendix). At the same time the set of

seismic rays with source at r01 is calculated. However, in

addition we must assume that the values j i increase with

increasing a i, as is required by the kinematics of head waves.

Thus we have defined an increasing function j � j (a ) and
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consequently function (6) has been determined completely.

The calculated homogeneous function approximates the real

velocity distribution only in the area where the seismic rays

corresponding to a given pair of reverse traveltime curves

penetrate. To define this area we use the last ray from a set of

rays calculated in the process of finding the function

j � j (a ), and calculate the ray that passes through the

sources r01 and r02. We call this ray the boundary ray. The

region defined by the boundary ray and the area of surface

with known velocity function is called the local velocity field.

For a complex set of observed traveltime curves, the final

velocity cross-section is constructed from the local velocity

fields.

C O N S T R U C T I O N O F F I N A L V E L O C I T Y

C R O S S - S E C T I O N

The final cross-section is constructed by a method of

superposition of the local velocity fields. Assume a system

of observation as shown in Fig. 2. One possible approach is

as follows. The local velocity field is calculated for every pair

of reverse traveltime curves chosen from the system of

traveltime curves. First the local velocity fields for the

shortest pairs of reverse traveltime curves, denoted in Fig. 2

as 1, are calculated (a `short pair' of traveltime curve means a

short distance between the sources corresponding to the pair

of reverse traveltime curves). Then the velocity distribution

is known for depths less than or equal to h1, where

h1 � min (hi) and hi are the depths of maximum penetration

of rays for the shortest pairs of traveltime curves. Next, the

observed traveltime curves are recomputed at the first level

h1, i.e. the downward continuations of the first arrivals at this

level are constructed, and then the process of calculations is

repeated. It is not a difficult technical problem. However, the

calculated velocity distribution in the first band is an

approximation and differs from the real velocity distribution.

Consequently in the process of the recomputation of

traveltimes, errors accumulate. In addition the process is

too complex.

However, here we use a different approach. Suppose that

we can calculate an arbitrary velocity function of two

coordinates using the data of two reverse traveltime curves.

Then the local velocity field calculated for the longest pair of

reverse traveltime curves would coincide with the local

velocity field for any of the shorter pairs of traveltime curves

at all points where they cover the same subsurface area.

However, the homogeneous function (1) is not an arbitrary

function of two coordinates (r,w ) or equivalently (x,z). It

changes as an arbitrary function in the subvertical direction,

but it also changes as a power function in the subhorizontal

direction. In this case the approximation is better if the shot

distance of the reverse pair is shorter. Therefore, the local

velocity field corresponding to a shorter pair of traveltime

curves is a better approximation of the real velocity

distribution and we replace the local values of velocity

corresponding to longer shot distances with values of the

shorter shot distance at those points where they cover the

same subsurface area.

Thus, we construct a final seismic cross-section using a

system of priorities. Let the traveltime curve system consist of

several pairs of reverse traveltime curves (Fig. 2). Then the

local velocity fields corresponding to the shortest distance

between shotpoints, denoted by 1, receive the highest priority.

Velocity values corresponding to these local velocity fields are

always present in the cross-section. Velocity values of local

velocity fields, corresponding to pairs of traveltime curves

with greater distance between shotpoints (denoted by 2 and

3), are present in the velocity cross-section when a velocity

point corresponding to a shorter traveltime curve is absent.

At the points of intersection of local velocity fields with the

same priority, the average velocity value is calculated. Thus,

only the lower parts of the local velocity fields determined by

the longer distance between shotpoints are present in the

cross-section (Fig. 2).

Every local velocity field is defined by its own homo-

geneous velocity function, i.e. the values of m, c and c (w )

vary for different local velocity fields. These values are

Figure 2 Construction of the final cross-section from local velocity

fields using the priority system. The traveltime curves and the plan of

the cross-section including the boundary rays of the local velocity

fields are shown. Values of priority are indicated by the numbers 1, 2

and 3.
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calculated independently, from different pairs of the reverse

traveltime curves. In order to calculate the approximate

homogeneous functions we use the formula for kinematics of

head waves; consequently the following limitations charac-

terize the local velocity functions. The functions c (w )

increase with polar angle. Waveguides can be present on

the final cross-section only on the boundaries between

different local velocity fields. The velocity inside the

waveguides is defined as an effective-velocity function. The

hidden layer problem also occurs. In this case an effective-

velocity distribution is obtained in the blind zone.

It has been shown (Piip and Efimova 1987) that the

algorithm is stable. Velocity values corresponding to different

local velocity fields overlap significantly in the final cross-

section, and boundaries of local velocity fields are not

apparent in the final velocity field. In general, the local

velocity fields computed for neighbouring pairs of traveltime

curves are virtually coincident at their points of intersection.

The error in velocity computation may be defined by the

difference in velocity values at these points. Occasionally, but

in not more than 5% of cases, the local velocity field differs

significantly from a neighbouring local velocity field. In such

a case, the boundaries of the local velocity field are seen in the

common cross-section, drawn as a contour field with equal

intervals. Such local fields must be eliminated from the cross-

section. In this case the velocity values are replaced

automatically by values of the local velocity field with a

lower priority.

Numerous tests of cross-sections calculated by these methods

show that they fit the data within generally accepted limits (Piip

and Efimova 1985, 1990, 1996, and examples in this paper).

We note here that analogous methods of construction of

cross-sections using the approximation of overlapping layers

by an effective constant velocity (for example, the plus±

minus method) are applied widely in refraction and reflection

seismic exploration.

T H E O RY S TAT E M E N T S

Mathematical proofs of the following statements are given in

the Appendix.

1 Traveltime curves recorded at the surface of a medium with

a homogeneous velocity function, and sets of rays and

wavefronts whose sources lie on the same radial line are

similar. This is true for both refracted and reflected waves.

For two reverse traveltime curves, non-linear continuous

transformations exist which continuously map the forward

traveltime curve on to the reverse one and vice versa. These

transformations have enabled us to develop an automatic

procedure of identification of waves refracted at different

seismic boundaries for the reverse traveltime curves of first

arrivals.

2 The differential equation of a ray for a medium with a

homogeneous velocity function is a first-order equation. The

seismic ray has a constant parameter along its path.

3 Homogeneous functions of two coordinates describe a

medium whose velocity depends essentially on two coordinates.

However, the rays and time fields corresponding to these

velocity functions can be transformed to those for a medium

whose velocity depends on one coordinate only, i.e. the polar

angle. This is illustrated in Fig. 1, where the rays and time fields

corresponding to the media shown in columns 2 and 3 can be

transformed into those for the media shown in the first column.

4 These properties of homogeneous velocity functions have

enabled us to solve the inverse kinematic problem for such

media, i.e. to reconstruct the velocity field using the data of a

pair of reverse traveltime curves of refracted first arrivals. A

system of curved seismic rays is computed in the course of

solving the problem. The algorithm for the solution of this

inversion problem is stable (Piip and Efimova 1987). Thus in

the case of a complex shooting geometry, the common-

velocity cross-section may be constructed by application of a

local approximation of the real velocity distribution using

homogeneous functions. In general, the acquisition system

includes a few pairs of reverse traveltime curves and therefore

the final cross-section is constructed using the method of

superposition of local velocity fields, corresponding to

different pairs of reverse traveltime curves.

T H E G O D O G R A F P R O G R A M

The theory stated above has served as the basis for the

creation of a computer program known as godograf. It has

provided the following results.

1 Complete automation of the interpretation process. First-

arrival traveltime curves are used only as data. An initial

model is not needed for the inversion process. It is not

necessary initially to distinguish between the refracted waves

from different refracting boundaries and to identify them on

the traveltime curves. This is performed automatically.

2 A continuous velocity cross-section is obtained, where the

velocity and its gradient are known for every point. The

seismic boundaries in such a cross-section are of two types. In

the first type, the boundaries are lines where the velocity is

discontinuous and in the second type, the boundaries are lines

where the velocity gradient is discontinuous.
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3 A geological interpretation of the seismic cross-section is

made by the interpreter. The different layers, boundaries and

faults are identified. The seismic cross-section is a velocity

field defined by velocity values calculated at the nodes of a

250 � 100 rectangular grid. The velocity contours are drawn

at equal intervals and the values of the velocity and velocity

gradient can be evaluated visually at every point on the

cross-section. The boundaries, folds and faults are mapped on

the velocity fields and can be traced by the interpreter. Each

layer has an inner structure, characterized by dominant

values of the velocity gradient and its own contour pattern.

4 Horizontal velocity map-slices are constructed at different

depths, if there are several refraction profiles in the area

under investigation. Representing a cross-section as the

Figure 3 (a) Refraction traveltime curves

computed for the trough model; (b) the time

field t(x,L) corresponding to refraction tra-

veltime curves. In (a) the traveltime curves

x0(x1,t) represent the contours x0 � const (x0

is the abscissa of the shotpoint, x1 is that of

the receiver); (b) time field t(x,L) shows the

same traveltime curves but with the coordi-

nates x � (x0 1 x1)/2, L � abs(x0 ± x1). The

contours L � const are drawn at equal

intervals of 25 m. It can be seen that the

time field t(x,L) maps the main features of the

model.
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velocity field given at the nodes of a rectangular grid enables

easy interpolation. It is possible to calculate horizontal

velocity map-slices and to construct 3D structures.

5 The system of traveltime curves can be interpolated. It is

also possible to compare the structures on the cross-sections

obtained with the corresponding features on the traveltime

curves. We represent the refraction traveltime curves of the first

arrivals by the coordinates (x,L) and construct the time field

t(x,L). Here, x is the coordinate of the centre of a base (a base

being the interval between a source and a receiver) and L is the

length of a base. The contours L � const are drawn in the time

field t(x,L) at equal intervals. This time field is analogous to a

time-section for reflected waves obtained by the common-

midpoint method. The main features of a cross-section at depth

are revealed in such a time field. This method for imaging of

traveltime curves was proposed by Puzyrev (1963).

godograf is a universal program for the interpretation of

any system of refraction traveltime curves obtained by any

refraction method. It can be used in both shallow seismic and

deep investigations of the crust and mantle, including

engineering, exploration for oil and deep seismic sounding.

The minimum shooting geometry required to apply this

inversion method is two shotpoints. The high accuracy of the

velocity computation enables the velocity field contours

representing the cross-sections to be constructed at small

intervals, usually from 0.02 km/s to 0.2 km/s. The seismic

boundaries are seen as lines of high-density velocity contours

or lines where the density of contours changes sharply.

Examination by ray tracing of the cross-sections computed

with this method has shown that observed and calculated

times are consistent (Piip and Efimova 1985, 1990, 1996, and

the example in this paper). This inversion method is now used

Figure 4 Comparison of the velocity fields

for the trough model: (a) the given field; (b)

the result of inversion; (c) a comparison of

the given (smooth) and the restored vertical

velocity functions for the same model. The

contour interval is 200 m/s. The vertical

magnification is 2:1.
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in Russia for investigating shallow depths in engineering

seismic and for interpreting deep seismic sounding data.

N U M E R I C A L S I M U L AT I O N

The potential of this inversion method has been investigated

by numerical simulation (Piip 1978, 1982a,b, 1984). We now

consider two models. The traveltime curves t(x,x0) for the

first trough model are shown in Fig. 3(a). This is a generally

accepted method of imaging traveltime curves where the

contours x0 � const are drawn. In this case, x denotes

the abscissa of the receiver and x0 denotes the abscissa of the

source. The model (Fig. 4a) is composed of two horizontal

layers where the vertical velocity gradient is present. The

layers are divided by a transient layer with an increased

gradient value. In the upper layer, the trough is represented by

Figure 5 Inversion of traveltime curves for a

model with sine-shaped velocity contours: (a)

the computed traveltime curves with an error

of approximately 1%; (b) the time field t(x,L)

corresponding to the traveltime curves; (c) a

comparison of the given contours (dashed

lines) with the inversion contours (continuous

lines). The contour interval is 200 m/s. The

vertical magnification is 4:1.
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a domain with low velocity values. Two vertical transient

zones separate the trough from the embedding layer. The

time field t(x,L) is shown in Fig. 3(b). This is another

representation of the traveltime curves where the contours

L � | x 2 x0 | � constant, with dL � 0.25 m, are drawn. It

can be seen that the main features of the model are

represented in the time field. The model obtained as the

result of the inversion is shown in Fig. 4(b). All the structures

of the given model are present in the cross-section obtained.

In the central part of the model the velocity values, velocity

gradient values and depths are recovered well at all depths of

ray penetration. This can be seen in Fig. 4(c), where sets of

vertical velocity functions, both given and computed, are

compared. The model was piecewise recovered, demonstrat-

ing the high stability of the algorithm. However, significant

errors are present in the upper edges of the model. These can

be explained by the low density of penetrating rays here.

The traveltime curves computed for a second model with

sine-shaped velocity contours are shown in Fig. 5(a).

Approximately 1% noise with rms deviation of 0.002 s was

added to the computed time values. The time field t(x,L) (see

Fig. 5b) images the structure of the velocity contours. The

recovered model obtained using godograf is shown in

Fig. 5(c), where the given velocity contours are represented

by dashed lines. They appear as an average of the

reconstructed velocity contours. Forty-six local velocity fields

were used for constructing the final cross-section.

F I E L D E X A M P L E 1 : R E F R A C T I O N

I N V E S T I G AT I O N I N T O T H E S A L A I R

M U LT I M E TA L L I C D E P O S I T

High and variable values of the velocity gradient are usual for

seismic cross-sections in ore deposit regions. The interpreta-

tion of refraction traveltime curves is very difficult using

traditional methods. This example illustrates the potential of

the refraction inversion technique using a local approximation

of real velocity fields by homogeneous functions.

The seismic profile is located at the northeast of the Salair

deposit, which contains multimetallic ores. The deposit is

situated on the slope of a large anticline, near the junction of

the Salair ridge and the Kuznetskaya trough (South Siberia,

Russia). The ore field is an oval lens of magmatic and

metamorphosed rocks, embedded in limestone. The area is

enriched by metals and barite formed above intrusive bodies

along transverse faults. Chemical and physical weathering

crusts and karst troughs have developed there.

The Central Geophysical Expedition (Novokuznetsk,

Russia) carried out the seismic work. The profile length is

750 m. Many wells were drilled along the profile. Fourteen of

the wells were terminated at the limestone top. Two wells

reached the karst trough bottom. Four wells passed the whole

seismic cross-section depth near the karst trough.

The refraction traveltime curves (Fig. 6) have a complex

form. The time field t(x,L) for the Salair profile is shown in

Figure 6 Refraction traveltime curves along

the profile in the Salair deposit region.
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Figure 7 (a) Refraction time field t(x,L) for

the Salair profile; (b) the velocity seismic

cross-section as a result of inversion. The

positions of wells are shown on the surface.

The dashed lines indicate the lithological

boundaries obtained from the well data.

The contour interval is 200 m/s. The vertical

magnification is 4:1.

Figure 8 The ray diagram computed with

the inversion process for the 80±310 m

interval on the Salair profile. The points of

intersection of rays and the f � const levels

are shown here. The main refraction bound-

aries are visible, because the seismic rays are

focused near boundaries.
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Fig. 7(a), where a deep trough is visible near the 350±400 m

interval of the profile. The positions of the wells are shown in

Fig. 7(b), where a seismic cross-section obtained as a result of

the inversion is represented by velocity contour lines. Dashed

lines represent the lithological boundaries based on the

borehole data. The velocity contour lines are drawn at

equal intervals (200 m/s) on the cross-section. The layers

and structures contained in the cross-section are (from top

to bottom): loose subsurface rocks, terrigenous rocks, lime-

stone, marble limestone, karst trough and schist. The

disturbed schist includes the orebodies. Figure 7(b) shows

good correlation between the seismic cross-section and the

well data.

A set of seismic ray curves is calculated during the solution

process. For example, the ray diagrams for the Salair cross-

section are shown in Fig. 8. Refraction rays calculated for

the 80±310 m interval of the profile are represented here

by the points of intersection of rays and the w � const

levels. The main refracting boundaries are visible in this

figure because the seismic rays are focused near seismic

boundaries.

F I E L D E X A M P L E 2 : I N V E S T I G AT I O N I N T O

T H E B A S E M E N T S T R U C T U R E I N T H E

M O S C O W R E G I O N

godograf was used to reinterpret previous refraction data

obtained in order to investigate the crystalline basement

structure in platform regions. It is known that the cross-

section obtained using the common-midpoint reflection

method does not reveal the inner structure of the basement

sufficiently well. Reinterpretation of the previous refraction

data obtained along profiles located in the Moscow region

has shown that significant complementary information may

be gained using the homogeneous function method. The

acquisition geometry includes 5±7 shotpoints for every

profile of 150±200 km length, i.e. the shotpoint spacing is

approximately 30 km. The length of the traveltime curves

achieved is 70 km and the distance between the receivers is

100 m. The top and interior structure of the basement are

sufficiently clear in the new cross-sections. Figure 9 shows

the cross-section along profile V-63. This profile is located in

the eastern part of the investigated area and the basement

structure can be clearly seen here. The top of the crystalline

basement can be seen on the right-hand side of the cross-

section represented by a sharp boundary of the first type or a

narrow transient zone, where velocity values increase from

between 5.6 and 5.7 km/s to between 5.8 and 6.0 km/s. On

the left-hand side of the cross-section, the top of the basement

is seen as a boundary of the second type. Most faults are

represented here by boundaries of the first type but not all of

them can be traced in the upper layer.

F I E L D E X A M P L E 3 : S E I S M I C C R O S S -

S E C T I O N O F T H E E A RT H U N D E R T H E

K L U C H E V S K AYA V O L C A N I C G R O U P

The homogeneous function method of refraction inversion

may be used in very complex geological conditions for

imaging of deep regions of the earth's crust.

The seismic surveys in Kamchatka (Russia) were carried

out by the Institute of Volcanology (Russian Academy of

Sciences) in 1986±7 along a profile 60 km in length that

crossed the central part of the Kluchevskaya volcanic group

(Fig. 10) (Balesta et al. 1992). The detailed system of the

refraction traveltime curves (Fig. 10a) was reinterpreted

Figure 9 Seismic cross-section along a pro-

file located in the central part of the

Moscow region. Only the velocity contours

are shown in the cross-section. The contour

interval is 0.02 km/s. The top of the crystal-

line basement is seen at a depth of 6±7 km

as a boundary of the first type in the right-

hand part of the cross-section and as a

boundary of the second type in the left-hand

part of the cross-section. The vertical

magnification is 4:1.
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using the homogeneous function technique. Figure 10(b)

shows the interpolated traveltime curves. These were used

for the inversion. The final cross-section is composed of 109

local velocity fields. The final cross-section was obtained

automatically and then its geological interpretation was

added manually (Fig. 11).

Several subparallel layers can be traced in the cross-section.

From bottom to top these are: the crystalline basement

Figure 10 (a) The traveltime curves along a profile through the Kluchevskoy volcano (Kamchatka, Russia). The inset shows the location of the

volcano. (b) The interpolated observed traveltime curves used for inversion (thin lines) and the times (circles) calculated by two-point ray tracing.
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denoted by B in Fig. 11 (the velocity values near the top are

5.5±6.2 km/s and the velocity gradient is nearly constant at

approximately 0.25 1/s); an upper Cretaceous basement

denoted by K2 (velocity interval of 5.3±5.8 km/s); a

Palaeogene layer denoted by P (velocity interval of 4.2±

5.3 km/s). Quaternary and Neogene layers lie above. All

these layers are divided into blocks by many listric and linear

faults. The main low-angle (458) thrust listric fault is located

directly under the volcanoes. A sharp, restricted domain

with reduced velocity is present in the crystalline basement

at a depth of about 8 km, where the listric fault terminates.

This domain is interpreted as the magma chamber. Other

anomalies are also present along this fault.

The cross-section was verified by solving the direct

problem with two-point ray tracing (Ditmar and Roslov's

firstomo computer program was used). The calculated

times agree with the observed ones sufficiently well as is

shown in Fig. 10(b). The mean square deviation of the

calculated times from the observed ones is 0.12 s.

C O N C L U S I O N S

1 The homogeneous function method produces an automatic

2D inhomogeneous simple inversion of refraction traveltime

curves for first arrivals. It does not require an initial model,

and preliminary distinguishing and identification of waves on

the traveltime curves are unnecessary.

2 Velocity cross-sections calculated by the homogeneous

function method fit the traveltime curves sufficiently well.

3 The homogeneous function method may be used for

inversion of any refraction profile data, obtained from both

shallow and deep seismic methods.

4 The homogeneous function method affords the imaging of

very different and complex geological media including the

boundaries of layers, faults, folded zones and velocity

anomalies.
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A P P E N D I X

Theory of the inversion method

Analysis of the eikonal equation using similarity theory methods

From the theory of similarity (Ehrenfest-Afanassjewa 1915),

it is known that variables of differential or algebraic

equations characterizing similar phenomena are invariant in

linear transformations. An analysis of the eikonal equation

using similarity theory methods distinguishes classes of

velocity functions where time fields, seismic rays and

traveltime curves characterize similarity relationships.

We consider the eikonal equation for a half-space given by

the Cartesian coordinates (x,z) and a velocity that depends

arbitrarily on two coordinates. This equation is

2t

2x

� �2

1
2t

2z

� �2

� 1

v2�x; z� : �A1�

The initial condition t(x0,z0) � 0 gives the location

and time of a source. We introduce the following linear

transformations of the variables:

x � C1x1;

z � C2z1; �A2�
t � C3t1;

where C1, C2, C3 are constants. If

C1 � C2 �A3�

and v(x,z) is such that

v�C1x;C1z� � Cm
1 v�x; z�; �A4�

and also if

C3 � C1 2 m
1 ; �A5�

it is easy to prove that (A1) remains invariant and preserves

the same form, i.e.

2t1

2x1

� �2

1
2t1

2z1

� �2

� 1

v2 x1; z1

ÿ �
:

�A6�

Therefore time fields described by (A1) and the conditions

(A2)±(A5) are similar. The condition (A4) distinguishes a

class of homogeneous functions. According to the definition

all homogeneous functions satisfy the following equation:

f �cx; cy� � cmf �x; y�;
where c is a constant and m is a power of the homogeneous

function with the real values ±1 , m , 1. In polar

Figure 11 Seismic cross-section of the refraction data under the Kluchevskoy volcano and its geological interpretation. The thin lines indicate

velocity contours. The contour interval is 0.1 km/s. The numbers indicate velocity values. The boundaries of layers and faults are shown by

dashed lines. The presumed geological ages of the layers are indicated. The crystalline basement is denoted by the letter B. The presumed

position of the magma chamber is indicated by a dashed line.
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coordinates all homogeneous functions have the form,

v�r;w� � rmc�w�; �A7�
where c (w ) is an arbitrary function of the polar angle.

Contours of homogeneous functions are similar curves,

although the form of these contours is arbitrary. The defined

domain of homogeneous velocity functions is 0 , r, 0

#w # p /2, because for the point r � 0, w � 0 the velocity

value is zero, which does not make sense.

Wavefront and ray equations

In media with homogeneous velocity functions, rays crossing

the same radius w � w0 at the same angle i � i0 are similar to

each other. It is also found that there is a constant parameter

or expression along the ray.

For a homogeneous velocity function, the differential

equation of the ray can be reduced to a first-order equation.

This can be shown as follows. The eikonal equation for a

homogeneous velocity function in polar coordinates has the

form,

2t

2r

� �2

1
1

r2

2t

2w

� �2

� 1

r2mc2 w
ÿ � : �A8�

This is a non-linear partial differential equation but it can be

transformed into two ordinary differential equations. By

substituting the following new variables in (A8):

T � rm 2 1t;R � ln r;

it is easy to obtain

2T

2R
2 �m 2 1�T

� �2

1
2T

2w

� �2

� 1

c2 w
ÿ � : �A9�

Representing the solution as the sum of two functions,

T�R;w� � V �R� 1 U �w�; �A10�

and writing

2T

2R
� q;

2T

2w
� p; �A11�

we obtain

q

m 2 1
2 V R� � � U w

ÿ �
^

1

�m 2 1�

��������������������
1

c2
2 p2;

s
or

U �w�^ 1

�m 2 1�

�������������������
1

c2
2 p2

s
� a; �A12�

q/�m 2 1� 2 V �R� � a; �A13�
where a is a constant of separation. It is easy to derive the

solution of (A13)

V � C1e�m 2 1�R 2 a:

We now consider (A12) for a ray given by polar coordinates

(Fig. 12). It is known that | grad t | � 1/v. The direction of

the gradient coincides with the tangent to the ray. We

introduce the angle i formed by the tangent to the ray with

the normal to the line w � const line (Fig. 12). It can be

shown that

1

r

2t

2w
� cosi

v
� cosi

rmc w
ÿ � ;

or

2T

2w
� cosi

c w
ÿ � � dU

dw
� p: �A14�

Equation (A12) can be written as

^
1

�m 2 1�

���������������������������������
1

c2�w� 2
cos2i

c2�w�

s
1 U �w� � a:

The sign is determined by the direction of the angle i. If we

choose the direction shown in Fig. 12, we obtain a positive

sign and so we have

1

m 2 1� �
sini

c�w� 1 U �w� � a; �A15�

and hence

U �w� � a 2
1

m 2 1� �
sini

c�w� :

We note here that the function (sin i) depends on w only. We

now consider the function (A10),

T � U �w� 1 V �R�;
and obtain

T � 2
1

m 2 1� �
sini

c�w� 1 C1e�m 2 1�R:

Using the variables (r,t), we find

rm 2 1t � 2
1

m 2 1� �
sini

c�w� 1 C1rm 2 1:

The constant C1 may be found using the initial conditions

t(r0,w0) � 0, and thus

C1 � sini0/��m 2 1�c�w0�rm 2 1
0 �:

We obtain

t � 2
1

m 2 1� �
sini

c�w�rm 2 1
1

1

m 2 1� �
sini0

c�w0�rm 2 1
0

: �A16�
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Function (A16) describes a time field in the medium with a

homogeneous velocity function. This expression enables us to

compute the initial angle i0 of the ray at the source if we

know the angle of emergence i and the arrival time t. Using

(A7), we can write

�m 2 1� t � 2
rsini

v
1

r0sini0

v0
: �A17�

As

r0sini0

v0
� const;

the expression,

�m21�t 1 r sin�i�/v � p;

defines the value of the ray parameter p which remains

constant along a ray.

Differential equation of a ray in media with a homogeneous

velocity function

We now differentiate (A15) with respect to w , and obtain

1

�m 2 1�
d

dw

sin i

c�w�
� �

1
dU

dw
� 0:

Using (A14), we can write

d

dw

sini

c�w�
� �

� �1 2 m� cosi

c�w� : �A18�

Equation (A18) is the differential equation of a ray in a

medium with a homogeneous velocity function. We note that

(A18) does not contain the variable r. It is an ordinary

differential equation of the first order and its solution is of the

form i � i(w ,C), where C is defined by the initial condition

i0 � i(w0,C). The solution of (A18) is invariant for any ray

crossing the line w0 � const at any point under angle i0 �
const and therefore it describes a set of similar rays.

Similarity of wavefronts and traveltime curves

We write (A16) in the form

rm21t � 2
1

m 2 1� �
sini

c�w� 1
1

m 2 1� �
sini0

c�w0�
r

r0

� �m 2 1

;

and since sin i is a function of w only (see (A15)), we can

write

t � r1 2 mF �w;w0; r/r0�: �A19�
We introduce the new variables,

R � r/r0;

T � t/r1 2 m
0 ; �A20�

where r0 is a radial coordinate of a source, and is constant.

We then obtain

T � R1 2 mF �w;w0;R�: �A21�
Note that r0 is not contained in (A21). As r0 � const, we have

introduced a linear transformation (A20). Equation (A21) is

invariant (see (A19)) with respect to (A20), therefore all time

fields with sources located on the same radial line w0 � const

are similar to each other.

We illustrate this in the following way. We compute a time

field t1(r1,w ) with a source at the point r0 � r01, w � w0 for a

medium with velocity given by (A7) (henceforth referred to as

medium (A7)). We input new coordinates,

T � t1/r1 2 m
01 ;R � r1/r01:

We obtain the time field T(R,w ) which coincides numerically

with a time field from a source located at point r0 � 1,

w � w0 on the same radial line w � w0, because if r1 � r01,

then R � R0;1. In order to compute the time field t2 � t2(r2)

with a source located at any other point on the same radial

line, for instance r0 � r02, w � w0, it is necessary to perform

the following linear transformations,

r2 � r02R � �r02/r01�r1; �A22�

t2 � r1 2 m
02 T � �r02/r01�1±mt1:

In order to obtain an equation of a traveltime curve system at

the surface of the medium, we must substitute w0 � 0

(sources are at the surface) and w � 0 (receivers are at the

surface) in (A22). Thus the same equations (A22) are valid

for refraction traveltime curves from any two sources at the

surface of medium (A7). As the function c (w ) is arbitrary, the

medium (A7) can include velocity break lines or linear seismic

boundaries and therefore the traveltime curve for this

Figure 12 Seismic ray geometry in polar coordinates.
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medium can be represented by three branches: direct,

refraction and reflection traveltime curves. Equations (A22)

are valid for them all and therefore for two reflection

traveltime curves at the surface of medium (A7).

The transformations (A22) convert right-hand branches of

any traveltime curve into right-hand branches of a traveltime

curve from another source. This also holds for the left-hand

branches, i.e. formulae (A22) are valid for the traveltime

curves from adjacent shotpoints.

Transformation for two reverse traveltime curves

For media with velocity (A7), non-linear transformations of

two reverse traveltime curves exist. They continuously map a

forward traveltime curve on to the reverse one and vice versa.

These transformations can be obtained using the reciprocity

law. We consider a pair of reverse traveltime curves: a

forward one t1(r1) with source at the point r01 and the reverse

one t2(r2) with source at the point r02, in the interval [r01,r02]

(Fig. 13).

According to the reciprocity law, t1(r02) � t2(r01). We

examine an arbitrary point on the forward traveltime curve

(t1,r1). We assume that the source r0 of traveltime curve t(r) is

located at this point and thus r1 � r0. Obviously

t(r01) � t1(r0) according to the reciprocity law. The traveltime

curve t(r) is obtained from a shotpoint adjacent to that of

t2(r2) and therefore t(r) and t2(r2) are similar to each other.

Points on traveltime curve t(r) can be transformed into points

on traveltime curve t2(r2) using (A22) and thus for the point

(r01,t) we obtain

r2 � �r01/r0�r02;

t2 � �t/r1 2 m
0 �r1 2 m

02 :

As r0 � r1 and t(r01) � t1(r1), according to the reciprocity

law we have

r2 � r01r02

r1
;

t2 � r02

r1

� �1 2 m

t1:

�A23�

We obtain the point (t2,r2) on the reverse traveltime curve

t2(r2), corresponding to some point (t1,r1) on the forward

traveltime curve t1(r1) or an image (r2,t2) of point (t1,r1).

These non-linear transformations are continuous.

Seismic boundaries, waveguides and layers with rapid

increase of velocity can exist in the media being considered

and, according to the presence or absence of signal,

multivalues are expressed on pairs of reverse traveltime

curves. The transformation (A23) results in the coincidence of

all branches of the pair of reverse traveltime curves and it can

therefore be used for the identification of waves from

different boundaries on pairs of reverse traveltime curves.

Transformation of the eikonal equation for velocity (A7) to

the eikonal equation for velocity depending on the polar

angle: reducing the dimension of the problem

The medium with velocity (A7) is a 2D inhomogeneous

medium, with velocity depending significantly on two

coordinates. However, forward and inverse problems in this

medium can be converted to 1D problems.

In the eikonal equation (A8), we substitute

r � r1 2 m;

a � j1 2 mjw; �A24�

t � j1 2 mjt;
and obtain

2t

2r

� �2

1
1

r2

2t

2w

� �2

� 1

c2�a=j1 2 mj� �
1

j2 a� � : �A25�

This is the eikonal equation in polar coordinates for velocity

depending on the polar angle only, i.e. a 1D velocity function.

Equations (A24) will transform the forward and inverse

problem for media (A7) to the 1D case, simplifying them

significantly. However, in the case of m � 1 the transforma-

tions do not make sense. This is a special point and is

excluded from our examination. It has been investigated by

Piip (1982b).

Figure 13 Transformations of two reverse traveltime curves.
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Inverse kinematics problem: reconstruction of a homo-

geneous velocity function in two coordinates from the data

of a pair of reverse first-arrival traveltime curves

We assume that we have a pair of reverse first-arrival

traveltime curves: t1(x1) from a source at the point x01 and

t2(x2) from a source at the point x02, given in the interval

[x01,x02]. We also assume that the real velocity distribution

can be approximated by function (A7). We do not know the

values of the polar coordinates for the given traveltime

curves. We assume that the polar origin is located at an

unknown point on the profile, either to the right or to the left

of the interval [x01,x02]. Therefore for w � 0, we have

r � |x 1 c|, where c is an unknown constant. Values of the

polar coordinates may be defined by the formulae,

r �
������������������������������
x 1 c� �2 1 z2

p
;

w � arctan
z

jz 1 cj
� �

;

and the velocity function may be written

v �
������������������������������
�x 1 c�2 1 z2

q� �m

c arctan
z

jx 1 cj
� �� �

; �A26�

where m and c and the values of the function c (w ) are

unknown. It is necessary to restrict the defined domain of the

unknown parameters m and c. Experience has shown that m

should lie in the range 22 # m # 2. The restrictions on c

may be obtained from a system of inequalities x01 1 c . 0

and x02 1 c . 0, or x01 1 c , 0 and x02 1 c , 0, so that

the origin r � 0 does not lie within the interval [x01,x02].

Thus we obtain the conditions c . ±x01 or c , ±x02.

We know that for medium (A7), a forward traveltime curve

can be transformed into the reverse one using (A23). In

Cartesian coordinates the transformations (A23) have the

form,

x2 1 c � �x01 1 c��x02 1 c�
x1 1 c

; �A27�

t2 � x02 1 c

x1 1 c

� �12m

t1:

We use these transformations to compute m and c. We

compute the mean square deviation between the observed

forward traveltime curve and the transformed reverse curve

using (A27) for arbitrary values of m and c. The function f of

m and c can be obtained if the observed time values are

known at n points. It is given by

f �c;m� � 1

n

Xn

t�1

�t1�x1i�2 ts
1�x1i��2

 !
;

where �A28�

ts
1�x1i� � x1i 1 c

x02 1 c

� �12m

t2
�x01 1 c��x02 1 c�

x1i 1 c
2 c

� �
:

The function f (c,m) is now minimized using standard

algorithms for minimizing a function of several variables.

The values of m and c which give a minimum value of f (c,m)

are taken as the parameters of the unknown velocity

function.

We now compute the mean (approximate) traveltime curve

corresponding to an unknown approximate velocity function.

We convert the observed traveltime curves to polar coordi-

nates using the computed value of c, so that

r � jx 1 cj;
and then we transform the observed reverse traveltime curve

t2(r) into the forward one using (A23), and the calculated

values of m and c. We obtain

ts
1�r� �

r

r02

� �12m

t2
r01 r02

r

� �
:

We compute the mean traveltime curve tÅ(r) using the formula,

�t r� � � 1
2 t1�r�1 ts

1�r�
ÿ �

:

We assume that tÅ(r) corresponds to some velocity function

(A7), while the function c (w ) remains unknown for the

present. We then convert the 2D problem to a 1D problem.

We transform the mean traveltime curve tÅ(r) using (A24), so

Figure 14 Ray propagation geometry.
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that we obtain

t � j1 2 mj�t;
r � r12m;

r0 � r12m
01 :

Finally, we obtain the traveltime curve t (r ) with source at the

point r0, corresponding to the unknown velocity function

j � j (a ).

Form of a traveltime curve t (r ) in a medium with velocity

j � j (a )

We require a function j � j(a ) that is an increasing function

of the polar angle a . We know that in the case of a velocity

increasing with depth z, the traveltime curve is convex,

so before computing V(z) the traveltime curve must be

approximated by a convex curve. We show that if the velocity

is an increasing function of the polar angle, the traveltime

curve is also convex.

In the medium with velocity (A7), rays have the parameter

given by (A17). In the case m � 0, the source and receiver are

located at the surface w � 0 at the points r0 and r and

therefore j � j0. The parameter is given by the expression,

2 t � sini0

j0

r0 2
sini

j0

r:

This gives

2t

2r
� sini

j0

;

sini0 � j0

r0

2t

2r
r 2

j0

r0

t:

�A29�

We differentiate (A29) with respect to r and obtain

2 �sini0�
2r

� j0

r0

22t

2r2
r 1

j0

r0

2t

2r
2

j0

r0

2t

2r
:

We define the sign of the left- and right-hand sides of the

equation:

sgn
2i0

2r

� �
� sgn

22t

2r2

� �
;

and then we have

if
2i0

2r
. 0) k . 0;

and if
2i0

2r
, 0) k , 0;

where k denotes the curvature of the traveltime curve t (r ). If

the initial angle i0 decreases with increasing distance r , then

we have a direct branch of the traveltime curve, which is

convex. Therefore direct branches of traveltime curve t(r )

are convex. If the angle i0 increases with increasing distance

r , then we have an inverse branch of the traveltime curve

t (r ), which is concave. This means that inverse branches of

traveltime curve t (r ) are concave when multivalued and

cusps exist on t (r). If we assume that the rays do not intersect

in the medium, the traveltime curve is convex and we must

approximate it by a convex curve to compute the increasing

function j(a ).

Computation of the function j � j(a )

In order to obtain the velocity j � j(a ) as an unknown

continuous increasing function and simultaneously to find

boundaries, we replaced j � j(a ) by a step function,

j*�a� �

j0�0 # a # a1�
j1�a1 # a # a2�

´´´´´´´´´´

jn�an # a�

8>>>>><>>>>>:
; �A30�

where

{ji 1 1 . ji}
n
i� 0:

Since j*(a ) is a function of the polar angle, the elementary

layers are wedge-shaped with constant velocities j � j i. In

this medium with velocity (A30), only head waves exist and

the traveltime curve of the first arrival is a broken line

consisting of linear traveltime curves of elementary head

waves. We make the following assumptions: that the

traveltime curve t (r) is given at n discrete points

rk; tk

� 	n

k� 0
; where n is the number of interpolation points

on t (r ); that every point on t (r ) is the initial point of a head

wave; that the unknown medium with velocity (A30)

contains n layers. This data is used to calculate the velocities

j i and the angles s i � a i11 ± a i of the wedge-shaped layers.

The rays are indicated by the index k: kf gni� 0; and the

boundaries between the layers by the index l: lf gni� 0. The angle

of each layer is denoted by s l. The rays are refracted at every

boundary and if the angle of refraction is critical, a head wave

occurs. We consider only those rays which are reflected from

the boundaries at the critical angle (Fig. 14). Angles of

emergence of the rays at the boundary l are denoted by b l k.

The initial angles at the same boundary are denoted by d l k

and the critical angle for this boundary is denoted by g l. The
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velocity in the first layer is defined by

j0 � 1

2t /2r

����
r�r0

:

In order to define the angles of emergence of the rays at the

surface, we differentiate and obtain

b0k � arcsin j0

2t

2r

����
r�rk

 !( )n

k�1

:

The initial angles are defined using the expression for the ray

parameter (A17) which for this case can be written

2tk � sind0k

j0

r0 2
sinb0k

j0

rk:

We thus obtain

d0k � arcsin
j0

r0

sinb0k

j0

rk 2 tk

� �� �� �n

k� 1

:

From triangles KOB and KAB (Fig. 14), we obtain

s1 � b01 2 d01

2
; �A31�

g1 �
d01 1 b01

2
;

and then

j1 � j0

sing1

;

where g1 is the critical angle. Formulae similar to (A31) were

derived by Adachi (1954). Thus the angle s1 of the first layer

and the velocity value j1 in the second layer have been

computed and the recursive method is now applied. All

rays are continued downwards at the first boundary l � 1,

i.e. the top of the second layer. We will compute the

angles of emergence of the rays and the initial angles

d1kf gnk� 2; b1k

� 	n

k� 2
t the boundary l � 1 of the layer with

velocity j � j1.

For this we introduce the angles of incidence of rays at the

boundary l�1:

h12;v12;

fh1kgnk�2; fv1kgnk�2

(see Fig. 14).

From triangles KOC and KEM (Fig. 14), we obtain

h12 � s1 1 d02;

and by analogy for other points on the traveltime curve,

{h1k � s1 1 d0k}n
k� 2;

and

v12 � b02 2 s1;

{v1k � b0k 2 s1}n
k� 2:

We write the law of refraction for boundary l � 1:

sinh1k

sin d1k
� j0

j1

;
sinv1k

sinb1k

� j0

j1

;

and by analogy, for all points we can write:

d1k � arcsin
j1

j0

sinh1k

� �� �n

k� 2

;

b1k � arcsin
j1

j0

sinv1k

� �n

k� 2

:

�
We have now found the initial angles and angles of emergence

of all rays for the second layer. The process can be repeated.

The angle of the second layer, the critical angle and the

velocity in the third layer can be defined by:

s2 � b12 2 d12

2
;

g2 �
b12 1 d12

2
;

j2 � j1

sing2

:

By repeating the computing down to the last layer, we

compute the table of values for the function j (a ):

ai �
Xi

i�1

si
; j � ji

( )n

i� 0

:

Thus we have defined the function j (a ). We now return to

the original coordinates,

r � r1=�1 2 m�;

w � a

j 1 2 m j ;

c � j;

and compute the velocity function.

In the process of computing the function j (a ) we have

calculated the rays. It should be noted that the last ray (the

boundary ray) to restrict the domain of the cross-section

is where the real velocity distribution corresponds to the

derived function.
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